Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia C. Engelmann is active.

Publication


Featured researches published by Julia C. Engelmann.


Blood | 2012

Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing

Anna Dolnik; Julia C. Engelmann; Maren Scharfenberger-Schmeer; Julian Mauch; Sabine Kelkenberg-Schade; Berit Haldemann; Tamara Fries; Jan Krönke; Michael W.M. Kühn; Peter Paschka; Sabine Kayser; Stephan Wolf; Verena I. Gaidzik; Richard F. Schlenk; Frank G. Rücker; Hartmut Döhner; Claudio Lottaz; Konstanze Döhner; Lars Bullinger

Acute myeloid leukemia (AML) is characterized by molecular heterogeneity. As commonly altered genomic regions point to candidate genes involved in leukemogenesis, we used microarray-based comparative genomic hybridization and single nucleotide polymorphism profiling data of 391 AML cases to further narrow down genomic regions of interest. Targeted resequencing of 1000 genes located in the critical regions was performed in a representative cohort of 50 AML samples comprising all major cytogenetic subgroups. We identified 120 missense/nonsense mutations as well as 60 insertions/deletions affecting 73 different genes (∼ 3.6 tumor-specific aberrations/AML). While most of the newly identified alterations were nonrecurrent, we observed an enrichment of mutations affecting genes involved in epigenetic regulation including known candidates like TET2, TET1, DNMT3A, and DNMT1, as well as mutations in the histone methyltransferases NSD1, EZH2, and MLL3. Furthermore, we found mutations in the splicing factor SFPQ and in the nonclassic regulators of mRNA processing CTCF and RAD21. These splicing-related mutations affected 10% of AML patients in a mutually exclusive manner. In conclusion, we could identify a large number of alterations in genes involved in aberrant splicing and epigenetic regulation in genomic regions commonly altered in AML, highlighting their important role in the molecular pathogenesis of AML.


Nucleic Acids Research | 2014

siPools: highly complex but accurately defined siRNA pools eliminate off-target effects

Michael Hannus; Michaela Beitzinger; Julia C. Engelmann; Marie-Theresa Weickert; Rainer Spang; Stefan Hannus; Gunter Meister

Short interfering RNAs (siRNAs) are widely used as tool for gene inactivation in basic research and therapeutic applications. One of the major shortcomings of siRNA experiments are sequence-specific off-target effects. Such effects are largely unpredictable because siRNAs can affect partially complementary sequences and function like microRNAs (miRNAs), which inhibit gene expression on mRNA stability or translational levels. Here we demonstrate that novel, enzymatically generated siRNA pools—referred to as siPools—containing up to 60 accurately defined siRNAs eliminate off-target effects. This is achieved by the low concentration of each individual siRNA diluting sequence-specific off-target effects below detection limits. In fact, whole transcriptome analyses reveal that single siRNA transfections can severely affect global gene expression. However, when complex siRNA pools are transfected, almost no transcriptome alterations are observed. Taken together, we present enzymatically produced complex but accurately defined siRNA pools with potent on-target silencing but without detectable off-target effects.


Leukemia | 2013

Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia.

S Krentz; Jana Hof; A. Mendioroz; R. Vaggopoulou; Petra Dörge; Claudio Lottaz; Julia C. Engelmann; T. W. L. Groeneveld; K Seeger; Christian Hagemeier; Günter Henze; C Eckert; A von Stackelberg; Renate Kirschner-Schwabe

Despite risk-adapted treatment, survival of children with relapse of acute lymphoblastic leukemia (ALL) remains poor compared with that of patients with initial diagnosis of ALL. Leukemia-associated genetic alterations may provide novel prognostic factors to refine present relapse treatment strategies. Therefore, we investigated the clinical relevance of 13 recurrent genetic alterations in 204 children treated uniformly for relapsed B-cell precursor ALL according to the ALL-REZ BFM 2002 protocol. The most common alterations were deletions of CDKN2A/2B, IKZF1, PAX5, ETV6, fusion of ETV6-RUNX1 and deletions and/or mutations of TP53. Multivariate analysis identified IKZF1 deletion and TP53 alteration as independent predictors of inferior outcome (P=0.002 and P=0.001). Next, we investigated how both alterations can improve the established risk stratification in relapsed ALL. Intermediate-risk relapse patients with low minimal residual disease are currently considered to have a good prognosis. In this group, deletion of IKZF1 and alteration of TP53 identify patients with significantly inferior outcome (P<0.001). In high-risk relapse patients, deletion of IKZF1 is strongly predictive of a second relapse after stem cell transplantation (P<0.001). We conclude that IKZF1 and TP53 represent relevant prognostic factors that should be considered in future risk assessment of children with relapsed ALL to indicate treatment intensification or intervention.


Cell Reports | 2015

The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation

Inga Loedige; Leonhard Jakob; Thomas Treiber; Debashish Ray; Mathias Stotz; Nora Treiber; Janosch Hennig; Kate B. Cook; Quaid Morris; Timothy R. Hughes; Julia C. Engelmann; Michael P. Krahn; Gunter Meister

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Laboratory Investigation | 2014

Increased expression of c-Jun in nonalcoholic fatty liver disease

C Dorn; Julia C. Engelmann; M Saugspier; Andreas Koch; Arndt Hartmann; M Müller; Rainer Spang; Anja K. Bosserhoff; Claus Hellerbrand

Overnutrition is the major cause of nonalcoholic fatty liver disease (NAFLD) and its advanced form nonalcoholic steatohepatitis (NASH). We aimed to develop and characterize a murine model, which resembles both the pathology and nutritional situation, of NASH patients in Western societies. Mice were fed with a NASH-inducing diet (ND) containing sucrose, cholesterol and fats rich in saturated fatty acids in a composition, which mimics Western food. After 12 weeks, ND-fed mice revealed obesity and impaired glucose tolerance. In the liver, ND-feeding led to marked steatosis, hepatocellular damage, inflammation and beginning fibrosis. Transcriptome-wide gene expression analysis and search for over-represented transcription factor target sites among the differentially expressed genes identified activator protein-1 (AP-1) as the most likely factor to cause the transcriptional changes in ND livers. Combining differentially expressed gene and protein–protein interaction network analysis identified c-Jun as hub in the largest connected deregulated sub-network in ND livers. Accordingly, ND livers revealed c-Jun-phosphorylation and nuclear translocation. Moreover, hepatic c-Jun expression was enhanced in ND-fed mice. Combined tissue microarray technology and immunohistochemical analysis confirmed enhanced hepatic c-Jun levels in NAFLD patients, which correlated with inflammation, and notably, with the degree of hepatic steatosis. In summary, our new mouse model shows important pathological changes also found in human NASH and indicates c-Jun/AP-1 activation as critical regulator of hepatic alterations. Abundance of c-Jun in NAFLD likely facilitates development and progression of NASH.


Journal of Proteome Research | 2015

Data Normalization of 1H NMR Metabolite Fingerprinting Data Sets in the Presence of Unbalanced Metabolite Regulation

Jochen Hochrein; Helena U. Zacharias; Franziska Taruttis; Claudia Samol; Julia C. Engelmann; Rainer Spang; Peter J. Oefner; Wolfram Gronwald

Data normalization is an essential step in NMR-based metabolomics. Conducted properly, it improves data quality and removes unwanted biases. The choice of the appropriate normalization method is critical and depends on the inherent properties of the data set in question. In particular, the presence of unbalanced metabolic regulation, where the different specimens and cohorts under investigation do not contain approximately equal shares of up- and down-regulated features, may strongly influence data normalization. Here, we demonstrate the suitability of the Shapiro-Wilk test to detect such unbalanced regulation. Next, employing a Latin-square design consisting of eight metabolites spiked into a urine specimen at eight different known concentrations, we show that commonly used normalization and scaling methods fail to retrieve true metabolite concentrations in the presence of increasing amounts of glucose added to simulate unbalanced regulation. However, by learning the normalization parameters on a subset of nonregulated features only, Linear Baseline Normalization, Probabilistic Quotient Normalization, and Variance Stabilization Normalization were found to account well for different dilutions of the samples without distorting the true spike-in levels even in the presence of marked unbalanced metabolic regulation. Finally, the methods described were applied successfully to a real world example of unbalanced regulation, namely, a set of plasma specimens collected from patients with and without acute kidney injury after cardiac surgery with cardiopulmonary bypass use.


PLOS ONE | 2012

A least angle regression model for the prediction of canonical and non-canonical miRNA-mRNA interactions

Julia C. Engelmann; Rainer Spang

microRNAs (miRNAs) are short non-coding RNAs with regulatory functions in various biological processes including cell differentiation, development and oncogenic transformation. They can bind to mRNA transcripts of protein-coding genes and repress their translation or lead to mRNA degradation. Conversely, the transcription of miRNAs is regulated by proteins including transcription factors, co-factors, and messenger molecules in signaling pathways, yielding a bidirectional regulatory network of gene and miRNA expression. We describe here a least angle regression approach for uncovering the functional interplay of gene and miRNA regulation based on paired gene and miRNA expression profiles. First, we show that gene expression profiles can indeed be reconstructed from the expression profiles of miRNAs predicted to be regulating the specific gene. Second, we propose a two-step model where in the first step, sequence information is used to constrain the possible set of regulating miRNAs and in the second step, this constraint is relaxed to find regulating miRNAs that do not rely on perfect seed binding. Finally, a bidirectional network comprised of miRNAs regulating genes and genes regulating miRNAs is built from our previous regulatory predictions. After applying the method to a human cancer cell line data set, an analysis of the underlying network reveals miRNAs known to be associated with cancer when dysregulated are predictors of genes with functions in apoptosis. Among the predicted and newly identified targets that lack a classical miRNA seed binding site of a specific oncomir, miR-19b-1, we found an over-representation of genes with functions in apoptosis, which is in accordance with the previous finding that this miRNA is the key oncogenic factor in the mir-17-92 cluster. In addition, we found genes involved in DNA recombination and repair that underline its importance in maintaining the integrity of the cell.


BMC Bioinformatics | 2015

miRA: adaptable novel miRNA identification in plants using small RNA sequencing data

M. Evers; Michael Huttner; Anne Dueck; Gunter Meister; Julia C. Engelmann

BackgroundMicroRNAs (miRNAs) are short regulatory RNAs derived from longer precursor RNAs. miRNA biogenesis has been studied in animals and plants, recently elucidating more complex aspects, such as non-conserved, species-specific, and heterogeneous miRNA precursor populations. Small RNA sequencing data can help in computationally identifying genomic loci of miRNA precursors. The challenge is to predict a valid miRNA precursor from inhomogeneous read coverage from a complex RNA library: while the mature miRNA typically produces many sequence reads, the remaining part of the precursor is covered very sparsely. As recent results suggest, alternative miRNA biogenesis pathways may lead to a more diverse miRNA precursor population than previously assumed. In plants, the latter manifests itself in e.g. complex secondary structures and expression from multiple loci within precursors. Current miRNA identification algorithms often depend on already existing gene annotation, and/or make use of specific miRNA precursor features such as precursor lengths, secondary structures etc. Consequently and in view of the emerging new understanding of a more complex miRNA biogenesis in plants, current tools may fail to characterise organism-specific and heterogeneous miRNA populations.ResultsmiRA is a new tool to identify miRNA precursors in plants, allowing for heterogeneous and complex precursor populations. miRA requires small RNA sequencing data and a corresponding reference genome, and evaluates precursor secondary structures and precursor processing accuracy; key parameters can be adapted based on the specific organism under investigation. We show that miRA outperforms the currently best plant miRNA prediction tools both in sensitivity and specificity, for data involving Arabidopsis thaliana and the Volvocine algae Chlamydomonas reinhardtii; the latter organism has been shown to exhibit a heterogeneous and complex precursor population with little cross-species miRNA sequence conservation, and therefore constitutes an ideal model organism. Furthermore we identify novel miRNAs in the Chlamydomonas-related organism Volvox carteri.ConclusionsWe propose miRA, a new plant miRNA identification tool that is well adapted to complex precursor populations. miRA is particularly suited for organisms with no existing miRNA annotation, or without a known related organism with well characterized miRNAs. Moreover, miRA has proven its ability to identify species-specific miRNAs. miRA is flexible in its parameter settings, and produces user-friendly output files in various formats (pdf, csv, genome-browser-suitable annotation files, etc.). It is freely available at https://github.com/mhuttner/miRA.


The Plant Cell | 2017

Zygotic Genome Activation Occurs Shortly After Fertilization in Maize

Junyi Chen; Nicholas Strieder; Nádia Graciele Krohn; Philippe Cyprys; Stefanie Sprunck; Julia C. Engelmann; Thomas Dresselhaus

Transcription profiles generated from maize gametes and zygotes at different stages reveal a highly dynamic zygotic genome activation pattern, providing insights into early embryo development. The formation of a zygote via the fusion of an egg and sperm cell and its subsequent asymmetric division herald the start of the plant’s life cycle. Zygotic genome activation (ZGA) is thought to occur gradually, with the initial steps of zygote and embryo development being primarily maternally controlled, and subsequent steps being governed by the zygotic genome. Here, using maize (Zea mays) as a model plant system, we determined the timing of zygote development and generated RNA-seq transcriptome profiles of gametes, zygotes, and apical and basal daughter cells. ZGA occurs shortly after fertilization and involves ∼10% of the genome being activated in a highly dynamic pattern. In particular, genes encoding transcriptional regulators of various families are activated shortly after fertilization. Further analyses suggested that chromatin assembly is strongly modified after fertilization, that the egg cell is primed to activate the translational machinery, and that hormones likely play a minor role in the initial steps of early embryo development in maize. Our findings provide important insights into gamete and zygote activity in plants, and our RNA-seq transcriptome profiles represent a comprehensive, unique RNA-seq data set that can be used by the research community.


The EMBO Journal | 2017

Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA‐guided gene silencing in vivo

Miguel Quévillon Huberdeau; Daniela M. Zeitler; Judith Hauptmann; Astrid Bruckmann; Lucile Fressigné; Johannes Danner; Sandra Piquet; Nicholas Strieder; Julia C. Engelmann; Guillaume Jannot; Rainer Deutzmann; Martin Simard; Gunter Meister

Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post‐translational modifications. Using quantitative mass spectrometry, we find that a C‐terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans. In human, hyper‐phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG‐1 is essential for microRNA function in vivo. Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA. Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute–mRNA interactions.

Collaboration


Dive into the Julia C. Engelmann's collaboration.

Top Co-Authors

Avatar

Rainer Spang

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunter Meister

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Kube

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

M. Evers

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C Dorn

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge