Julia C. Hailstone
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia C. Hailstone.
NeuroImage | 2010
Jonathan D. Rohrer; Gerard R. Ridgway; Sebastian J. Crutch; Julia C. Hailstone; Johanna C. Goll; Matthew J. Clarkson; Simon Mead; Jonathan Beck; Catherine J. Mummery; Sebastien Ourselin; Elizabeth K. Warrington; Jason D. Warren
The primary progressive aphasias (PPA) are paradigmatic disorders of language network breakdown associated with focal degeneration of the left cerebral hemisphere. Here we addressed brain correlates of PPA in a detailed neuroanatomical analysis of the third canonical syndrome of PPA, logopenic/phonological aphasia (LPA), in relation to the more widely studied clinico-anatomical syndromes of semantic dementia (SD) and progressive nonfluent aphasia (PNFA). 32 PPA patients (9 SD, 14 PNFA, 9 LPA) and 18 cognitively normal controls had volumetric brain MRI with regional volumetry, cortical thickness, grey and white matter voxel-based morphometry analyses. Five of nine patients with LPA had cerebrospinal fluid biomarkers consistent with Alzheimer (AD) pathology (AD-PPA) and 2/9 patients had progranulin (GRN) mutations (GRN-PPA). The LPA group had tissue loss in a widespread left hemisphere network. Compared with PNFA and SD, the LPA group had more extensive involvement of grey matter in posterior temporal and parietal cortices and long association white matter tracts. Overlapping but distinct networks were involved in the AD-PPA and GRN-PPA subgroups, with more anterior temporal lobe involvement in GRN-PPA. The importance of these findings is threefold: firstly, the clinico-anatomical entity of LPA has a profile of brain damage that is complementary to the network-based disorders of SD and PNFA; secondly, the core phonological processing deficit in LPA is likely to arise from temporo-parietal junction damage but disease spread occurs through the dorsal language network (and in GRN-PPA, also the ventral language network); and finally, GRN mutations provide a specific molecular substrate for language network dysfunction.
NeuroImage | 2011
Rohani Omar; Susie M.D. Henley; Jonathan W. Bartlett; Julia C. Hailstone; Elizabeth Gordon; Disa Sauter; Chris Frost; Sophie K. Scott; Jason D. Warren
Despite growing clinical and neurobiological interest in the brain mechanisms that process emotion in music, these mechanisms remain incompletely understood. Patients with frontotemporal lobar degeneration (FTLD) frequently exhibit clinical syndromes that illustrate the effects of breakdown in emotional and social functioning. Here we investigated the neuroanatomical substrate for recognition of musical emotion in a cohort of 26 patients with FTLD (16 with behavioural variant frontotemporal dementia, bvFTD, 10 with semantic dementia, SemD) using voxel-based morphometry. On neuropsychological evaluation, patients with FTLD showed deficient recognition of canonical emotions (happiness, sadness, anger and fear) from music as well as faces and voices compared with healthy control subjects. Impaired recognition of emotions from music was specifically associated with grey matter loss in a distributed cerebral network including insula, orbitofrontal cortex, anterior cingulate and medial prefrontal cortex, anterior temporal and more posterior temporal and parietal cortices, amygdala and the subcortical mesolimbic system. This network constitutes an essential brain substrate for recognition of musical emotion that overlaps with brain regions previously implicated in coding emotional value, behavioural context, conceptual knowledge and theory of mind. Musical emotion recognition may probe the interface of these processes, delineating a profile of brain damage that is essential for the abstraction of complex social emotions.
Neuropsychologia | 2010
Julia C. Hailstone; Sebastian J. Crutch; Martin D. Vestergaard; Roy D. Patterson; Jason D. Warren
There are few detailed studies of impaired voice recognition, or phonagnosia. Here we describe two patients with progressive phonagnosia in the context of frontotemporal lobar degeneration. Patient QR presented with behavioural decline and increasing difficulty recognising familiar voices, while patient KL presented with progressive prosopagnosia. In a series of neuropsychological experiments we assessed the ability of QR and KL to recognise and judge the familiarity of voices, faces and proper names, to recognise vocal emotions, to perceive and discriminate voices, and to recognise environmental sounds and musical instruments. The patients were assessed in relation to a group of healthy age-matched control subjects. QR exhibited severe impairments of voice identification and familiarity judgments with relatively preserved recognition of difficulty-matched faces and environmental sounds; recognition of musical instruments was impaired, though better than recognition of voices. In contrast, patient KL exhibited severe impairments of both voice and face recognition, with relatively preserved recognition of musical instruments and environmental sounds. Both patients demonstrated preserved ability to analyse perceptual properties of voices and to recognise vocal emotions. The voice processing deficit in both patients could be characterised as associative phonagnosia: in the case of QR, this was relatively selective for voices, while in the case of KL, there was evidence for a multimodal impairment of person knowledge. The findings have implications for current cognitive models of voice recognition.
Cortex | 2010
Katherine E. Piwnica-Worms; Rohani Omar; Julia C. Hailstone; Jason D. Warren
The cognitive mechanisms for the analysis of flavour information remain poorly understood. Patients with semantic dementia (SD) could potentially provide a window on these mechanisms; however, while abnormal eating behaviour and altered food preferences are common in SD, flavour processing has been little studied in this disorder. Here we undertook a detailed investigation of flavour processing in three patients at different stages of SD. One patient with a clinical syndrome of logopenic aphasia (LPA) was studied as a disease control, and six healthy control subjects also participated. Olfaction was assessed using the University of Pennsylvania Smell Identification Test and processing of flavours was assessed using a novel battery to assess flavour perception, flavour identification, and congruence and affective valence of flavour combinations. Patients with SD performed equivalently to healthy controls on the perceptual subtest, while their ability to identify flavours or to determine congruence of flavour combinations was impaired. Classification of flavours according to affective valence was comparable to healthy controls. In contrast, the patient with LPA exhibited a perceptual deficit with relatively preserved identification of flavours, but impaired ability to determine flavour congruence, which did not benefit from affective valence. Olfactory and flavour identification performance was correlated in both patients and controls. We propose that SD produces a true deficit of flavour knowledge (an associative agnosia), while other peri-Sylvian pathologies may lead to deficient flavour perception. Our findings are consistent with emerging evidence from healthy subjects for a cortical hierarchy for processing flavour information, instantiated in a brain network that includes the insula, anterior temporal lobes and orbitofrontal cortex. The findings suggest a potential mechanism for the development of food fads and other abnormal eating behaviours.
Brain | 2010
Rohani Omar; Julia C. Hailstone; Jane E. Warren; Sebastian J. Crutch; Jason D. Warren
Despite much recent interest in the clinical neuroscience of music processing, the cognitive organization of music as a domain of non-verbal knowledge has been little studied. Here we addressed this issue systematically in two expert musicians with clinical diagnoses of semantic dementia and Alzheimer’s disease, in comparison with a control group of healthy expert musicians. In a series of neuropsychological experiments, we investigated associative knowledge of musical compositions (musical objects), musical emotions, musical instruments (musical sources) and music notation (musical symbols). These aspects of music knowledge were assessed in relation to musical perceptual abilities and extra-musical neuropsychological functions. The patient with semantic dementia showed relatively preserved recognition of musical compositions and musical symbols despite severely impaired recognition of musical emotions and musical instruments from sound. In contrast, the patient with Alzheimer’s disease showed impaired recognition of compositions, with somewhat better recognition of composer and musical era, and impaired comprehension of musical symbols, but normal recognition of musical emotions and musical instruments from sound. The findings suggest that music knowledge is fractionated, and superordinate musical knowledge is relatively more robust than knowledge of particular music. We propose that music constitutes a distinct domain of non-verbal knowledge but shares certain cognitive organizational features with other brain knowledge systems. Within the domain of music knowledge, dissociable cognitive mechanisms process knowledge derived from physical sources and the knowledge of abstract musical entities.
Quarterly Journal of Experimental Psychology | 2009
Julia C. Hailstone; Rohani Omar; Susie M.D. Henley; Chris Frost; Michael G. Kenward; Jason D. Warren
Salient sensory experiences often have a strong emotional tone, but the neuropsychological relations between perceptual characteristics of sensory objects and the affective information they convey remain poorly defined. Here we addressed the relationship between sound identity and emotional information using music. In two experiments, we investigated whether perception of emotions is influenced by altering the musical instrument on which the music is played, independently of other musical features. In the first experiment, 40 novel melodies each representing one of four emotions (happiness, sadness, fear, or anger) were each recorded on four different instruments (an electronic synthesizer, a piano, a violin, and a trumpet), controlling for melody, tempo, and loudness between instruments. Healthy participants (23 young adults aged 18–30 years, 24 older adults aged 58–75 years) were asked to select which emotion they thought each musical stimulus represented in a four-alternative forced-choice task. Using a generalized linear mixed model we found a significant interaction between instrument and emotion judgement with a similar pattern in young and older adults (p < .0001 for each age group). The effect was not attributable to musical expertise. In the second experiment using the same melodies and experimental design, the interaction between timbre and perceived emotion was replicated (p < .05) in another group of young adults for novel synthetic timbres designed to incorporate timbral cues to particular emotions. Our findings show that timbre (instrument identity) independently affects the perception of emotions in music after controlling for other acoustic, cognitive, and performance factors.
Journal of Neurology, Neurosurgery, and Psychiatry | 2011
Rohani Omar; Jonathan D. Rohrer; Julia C. Hailstone; Jason D. Warren
Impairments of face processing occur frequently in frontotemporal lobar degeneration (FTLD) but the neuroanatomical basis for these deficits has seldom been studied systematically. Here a prospective voxel based morphometry study is described addressing the neuroanatomy of two key dimensions of face processing—face identification and facial emotion recognition—in a single cohort of 32 patients with FTLD (19 with frontal variant and 13 with temporal variant FTLD). For the FTLD group as a whole, face identification was positively associated with grey matter in the right anterior fusiform gyrus while recognition of angry expressions was positively associated with grey matter in the bilateral insula cortex. FTLD provides a perspective on the neuroanatomy of face processing that is complementary to focal lesion and normal functional imaging work.
Brain | 2011
Julia C. Hailstone; Gerard R. Ridgway; Jonathan W. Bartlett; Johanna C. Goll; Aisling H. Buckley; Sebastian J. Crutch; Jason D. Warren
Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing performance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recognition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s disease group. Face and name recognition were also impaired in both disease groups and name recognition was significantly more impaired than other modalities in the temporal variant frontotemporal lobar degeneration group. The Alzheimer’s disease group showed additional deficits of vocal gender perception and voice discrimination. The neuroanatomical analysis across both disease groups revealed common grey matter associations of familiarity, identification and cross-modal recognition in all modalities in the right temporal pole and anterior fusiform gyrus; while in the Alzheimer’s disease group, voice discrimination was associated with grey matter in the right inferior parietal lobe. The findings suggest that impairments of voice recognition are significant in both these canonical dementia syndromes but particularly severe in temporal variant frontotemporal lobar degeneration, whereas impairments of voice perception may show relative specificity for Alzheimer’s disease. The right anterior temporal lobe is likely to have a critical role in the recognition of voices and other modalities of person knowledge.
Journal of Neurology, Neurosurgery, and Psychiatry | 2009
Julia C. Hailstone; Rohani Omar; Jason D. Warren
The brain basis for music knowledge and the effects of disease on music cognition are poorly understood. Here we present evidence for relatively preserved knowledge of music in a musically untrained patient with semantic dementia and characteristic asymmetric anterior temporal lobe atrophy. Our findings suggest that music is partly separable neuropsychologically and anatomically from other semantic domains, with implications for the clinical management of patients with brain disease.
Neuropsychologia | 2011
Johanna C. Goll; Lois G. Kim; Julia C. Hailstone; Manja Lehmann; Aisling H. Buckley; Sebastian J. Crutch; Jason D. Warren
Highlights ► A study of nonverbal auditory object processing in four dementia syndromes. ► Subjects were assessed using a novel, customised neuropsychological battery. ► Different dementia syndromes lead to distinct auditory processing impairments. ► Evidence is provided for separable stages of nonverbal auditory processing.