Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia E. Maxson is active.

Publication


Featured researches published by Julia E. Maxson.


The New England Journal of Medicine | 2013

Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML

Julia E. Maxson; Jason Gotlib; Daniel A. Pollyea; Angela G. Fleischman; Anupriya Agarwal; Christopher A. Eide; Daniel Bottomly; Beth Wilmot; Shannon McWeeney; Cristina E. Tognon; J. Blake Pond; Robert H. Collins; Basem Goueli; Stephen T. Oh; Michael W. Deininger; Bill H. Chang; Marc Loriaux; Brian J. Druker; Jeffrey W. Tyner

BACKGROUND The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other myeloproliferative neoplasms and myeloproliferative-myelodysplastic overlap neoplasms. METHODS To identify potential genetic drivers in these disorders, we used an integrated approach of deep sequencing coupled with the screening of primary leukemia cells obtained from patients with CNL or atypical CML against panels of tyrosine kinase-specific small interfering RNAs or small-molecule kinase inhibitors. We validated candidate oncogenes using in vitro transformation assays, and drug sensitivities were validated with the use of assays of primary-cell colonies. RESULTS We identified activating mutations in the gene encoding the receptor for colony-stimulating factor 3 (CSF3R) in 16 of 27 patients (59%) with CNL or atypical CML. These mutations segregate within two distinct regions of CSF3R and lead to preferential downstream kinase signaling through SRC family-TNK2 or JAK kinases and differential sensitivity to kinase inhibitors. A patient with CNL carrying a JAK-activating CSF3R mutation had marked clinical improvement after the administration of the JAK1/2 inhibitor ruxolitinib. CONCLUSIONS Mutations in CSF3R are common in patients with CNL or atypical CML and represent a potentially useful criterion for diagnosing these neoplasms. (Funded by the Leukemia and Lymphoma Society and others.).


Blood | 2013

The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment

Jason Gotlib; Julia E. Maxson; Tracy I. George; Jeffrey W. Tyner

Although activation of tyrosine kinase pathways is a shared theme among myeloproliferative neoplasms, the pathogenetic basis of chronic neutrophilic leukemia (CNL) has remained elusive. Recently, we identified high-frequency oncogenic mutations in the granulocyte-colony stimulating factor receptor (CSF3R) in CNL and in some patients with atypical chronic myeloid leukemia. Inhibition of Janus kinase 2 or SRC kinase signaling downstream of mutated CSF3R is feasible and should be explored therapeutically. Herein, we discuss the potential impact of these findings for the classification and treatment of these disorders.


Blood | 2013

The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition

Angela G. Fleischman; Julia E. Maxson; Samuel B. Luty; Anupriya Agarwal; Lacey R. Royer; Melissa L. Abel; Jason D. MacManiman; Marc Loriaux; Brian J. Druker; Jeffrey W. Tyner

We have recently identified targetable mutations in CSF3R (GCSFR) in 60% of chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL-negative) chronic myeloid leukemia (aCML) patients. Here we demonstrate that the most prevalent, activating mutation, CSF3R T618I, is sufficient to drive a lethal myeloproliferative disorder in a murine bone marrow transplantation model. Mice transplanted with CSF3R T618I-expressing hematopoietic cells developed a myeloproliferative disorder characterized by overproduction of granulocytes and granulocytic infiltration of the spleen and liver, which was uniformly fatal. Treatment with the JAK1/2 inhibitor ruxolitinib lowered the white blood count and reduced spleen weight. This demonstrates that activating mutations in CSF3R are sufficient to drive a myeloproliferative disorder resembling aCML and CNL that is sensitive to pharmacologic JAK inhibition. This murine model is an excellent tool for the further study of neutrophilic myeloproliferative neoplasms and implicates the clinical use of JAK inhibitors for this disease.


Journal of Biological Chemistry | 2010

Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression.

Julia E. Maxson; Juxing Chen; Caroline A. Enns; An Sheng Zhang

Hemojuvelin (HJV) is an important regulator of iron metabolism. Membrane-anchored HJV up-regulates expression of the iron regulatory hormone, hepcidin, through the bone morphogenic protein (BMP) signaling pathway by acting as a BMP co-receptor. HJV can be cleaved by the furin family of proprotein convertases, which releases a soluble form of HJV that suppresses BMP signaling and hepcidin expression by acting as a decoy that competes with membrane HJV for BMP ligands. Recent studies indicate that matriptase-2 binds and degrades HJV, leading to a decrease in cell surface HJV. In the present work, we show that matriptase-2 cleaves HJV at Arg288, which produces one major soluble form of HJV. This shed form of HJV has decreased ability to bind BMP6 and does not suppress BMP6-induced hepcidin expression. These results suggest that the matriptase-2 and proprotein convertase-cleavage products have different roles in the regulation of hepcidin expression.


The FASEB Journal | 2013

Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle

Theodore P. Braun; Aaron J. Grossberg; Stephanie M. Krasnow; Peter R. Levasseur; Marek Szumowski; Xin Xia Zhu; Julia E. Maxson; J. Gabriel Knoll; Anthony P. Barnes; Daniel L. Marks

Cachexia is a wasting condition defined by skeletal muscle atrophy in the setting of systemic inflammation. To explore the site at which inflammatory mediators act to produce atrophy in vivo, we utilized mice with a conditional deletion of the inflammatory adaptor protein myeloid differentiation factor 88 (MyD88). Although whole‐body MyD88‐knockout (wbMyD88KO) mice resist skeletal muscle atrophy in response to LPS, muscle‐specific deletion of MyD88 is not protective. Furthermore, selective reexpression of MyD88 in the muscle of wbMyD88KO mice via electroporation fails to restore atrophy gene induction by LPS. To evaluate the role of glucocorticoids as the inflammation‐induced mediator of atrophy in vivo, we generated mice with targeted deletion of the glucocorticoid receptor in muscle (mGRKO mice). Muscle‐specific deletion of the glucocorticoid receptor affords a 71% protection against LPS‐induced atrophy compared to control animals. Furthermore, mGRKO mice exhibit 77% less skeletal muscle atrophy than control animals in response to tumor growth. These data demonstrate that glucocorticoids are a major determinant of inflammation‐induced atrophy in vivo and play a critical role in the pathogenesis of endotoxemic and cancer cachexia.—Braun, T. P., Grossberg, A. J., Krasnow, S. M., Levasseur, P. R., Szumowski, M., Zhu, X. X., Maxson, J. E., Knoll, J. G., Barnes, A. P., and Marks, D. L., Cancer‐ and endotoxin‐induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27, 3572–3582 (2013). www.fasebj.org


Blood | 2009

Processing of hemojuvelin requires retrograde trafficking to the Golgi in HepG2 cells

Julia E. Maxson; Caroline A. Enns; An Sheng Zhang

Hemojuvelin (HJV) was recently identified as a critical regulator of iron homeostasis. It is either associated with cell membranes through a glycosylphosphatidylinositol anchor or released as a soluble form. Membrane-anchored HJV acts as a coreceptor for bone morphogenetic proteins and activates the transcription of hepcidin, a hormone that regulates iron efflux from cells. Soluble HJV antagonizes bone morphogenetic protein signaling and suppresses hepcidin expression. In this study, we examined the trafficking and processing of HJV. Cellular HJV reached the plasma membrane without obtaining complex oligosaccharides, indicating that HJV avoided Golgi processing. Secreted HJV, in contrast, has complex oligosaccharides and can be derived from HJV with high-mannose oligosaccharides at the plasma membrane. Our results support a model in which retrograde trafficking of HJV before cleavage is the predominant processing pathway. Release of HJV requires it to bind to the transmembrane receptor neogenin. Neogenin does not, however, play a role in HJV trafficking to the cell surface, suggesting that it could be involved either in retrograde trafficking of HJV or in cleavage leading to HJV release.


Leukemia research reports | 2014

Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia.

Kim Hien T Dao; Magdolna B. Solti; Julia E. Maxson; Elliott F. Winton; Richard D. Press; Brian J. Druker; Jeffrey W. Tyner

Mutations in CSF3R (colony-stimulating factor 3 receptor) are frequent oncogenic drivers in chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML). Here we describe a 75 year old man who was diagnosed with CSF3R-T618I-positive atypical CML. He presented with leukocytosis, anemia, and thrombocytopenia and developed massive splenomegaly and severe constitutional symptoms. Hydroxyurea was given over a 6 month period but failed to provide any measureable clinical benefit. Eventually, he was treated with ruxolitinib, an FDA-approved JAK1/2 inhibitor, which resulted in dramatic improvement of his blood counts. He also had significant reduction of spleen volume and constitutional symptoms. This case highlights the need for a clinical trial to interrogate JAK1/2 as a potential molecular target in CNL and aCML in patients with or without CSF3R mutation. A clinical trial evaluating the safety and efficacy of ruxolitinib for this patient population is registered at ClinicalTrials.gov (NCT02092324).


Journal of Biological Chemistry | 2014

Ligand independence of the T618I mutation in the colony-stimulating factor 3 receptor (CSF3R) protein results from loss of O-linked glycosylation and increased receptor dimerization.

Julia E. Maxson; Samuel B. Luty; Jason D. MacManiman; Melissa L. Abel; Brian J. Druker; Jeffrey W. Tyner

Background: We recently identified CSF3R mutations in chronic neutrophilic leukemia. The most common mutation, T618I, signals without ligand through an undefined mechanism. Results: CSF3R T618I abrogates an O-glycosylation event and increases receptor dimerization. Conclusion: The constitutive activity of CSF3R T618I may be explained by loss of O-glycosylation. Significance: This study illustrates the role of O-linked glycosylation in protein function and oncogenesis. Mutations in the CSF3 granulocyte colony-stimulating factor receptor CSF3R have recently been found in a large percentage of patients with chronic neutrophilic leukemia and, more rarely, in other types of leukemia. These CSF3R mutations fall into two distinct categories: membrane-proximal mutations and truncation mutations. Although both classes of mutation have exhibited the capacity for cellular transformation, several aspects of this transformation, including the kinetics, the requirement for ligand, and the dysregulation of downstream signaling pathways, have all been shown to be discrepant between the mutation types, suggesting distinct mechanisms of activation. CSF3R truncation mutations induce overexpression and ligand hypersensitivity of the receptor, likely because of the removal of motifs necessary for endocytosis and degradation. In contrast, little is known about the mechanism of activation of membrane-proximal mutations, which are much more commonly observed in chronic neutrophilic leukemia. In contrast with CSF3R truncation mutations, membrane-proximal mutations do not exhibit overexpression and are capable of signaling in the absence of ligand. We show that the Thr-615 and Thr-618 sites of membrane-proximal mutations are part of an O-linked glycosylation cluster. Mutation at these sites prevents O-glycosylation of CSF3R and increases receptor dimerization. This increased dimerization explains the ligand-independent activation of CSF3R membrane-proximal mutations. Cytokine receptor activation through loss of O-glycosylation represents a novel avenue of aberrant signaling. Finally, the combination of the CSF3R membrane proximal and truncation mutations, as has been reported in some patients, leads to enhanced cellular transformation when compared with either mutation alone, underscoring their distinct mechanisms of action.


Acta Histochemica | 2011

The cell giveth and the cell taketh away: An overview of Notch pathway activation by endocytic trafficking of ligands and receptors

Emily B. Pratt; Jill S. Wentzell; Julia E. Maxson; Lauren Courter; Dennis J. Hazelett; Jan L. Christian

Notch signaling is firmly established as a form of cell-to-cell communication that is critical throughout development. Dysregulation of Notch has been linked to cancer and developmental disorders, making it an important target for therapeutic intervention. One aspect of this pathway that sets it apart from others is its apparent reliance on endocytosis by signal-sending and signal-receiving cells. The subtle details of endocytosis-mediated molecular processing within both ligand- and receptor-presenting cells that are required for the Notch signal to maintain fidelity remain unclear. The endosomal system has long been known to play an important role in terminating signal transduction by directing lysosomal trafficking and degradation of cell surface receptors. More recently, endocytic trafficking has also been shown to be critical for activation of signaling. This review highlights four models of endocytic processing in the context of the Notch pathway. In ligand-presenting cells, endocytosis may be required for pre-processing of ligands to make them competent for interaction with Notch receptors and/or for exerting a pulling force on the ligand/Notch complex. In receptor-presenting cells, endocytosis may be a prerequisite for Notch cleavage and thus activation and/or it could be a means of limiting ligand-independent Notch activation. Recent advances in our understanding of how and why endocytosis of Notch receptors and ligands is required for activation and termination of signaling during normal development and in disease states are discussed.


Clinical Cancer Research | 2016

The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I

Julia E. Maxson; Samuel B. Luty; Jason D. MacManiman; Jason Paik; Jason Gotlib; Peter L. Greenberg; Swaleh Bahamadi; Samantha L. Savage; Melissa L. Abel; Christopher A. Eide; Marc Loriaux; Emily A. Stevens; Jeffrey W. Tyner

Purpose: Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in the majority of chronic neutrophilic leukemia (CNL) and a smaller percentage of atypical chronic myeloid leukemia (aCML) cases. Although CSF3R point mutations (e.g., T618I) are emerging as key players in CNL/aCML, the significance of rarer CSF3R mutations is unknown. In this study, we assess the importance of the CSF3R T640N mutation as a marker of CNL/aCML and potential therapeutic target. Experimental Design: Sanger sequencing of leukemia samples was performed to identify CSF3R mutations in CNL and aCML. The oncogenicity of the CSF3R T640N mutation relative to the T618I mutation was assessed by cytokine independent growth assays and by mouse bone marrow transplant. Receptor dimerization and O-glycosylation of the mutants was assessed by Western blot, and JAK inhibitor sensitivity was assessed by colony assay. Results: Here, we identify a CSF3R T640N mutation in two patients with CNL/aCML, one of whom was originally diagnosed with MDS and acquired the T640N mutation upon evolution of disease to aCML. The T640N mutation is oncogenic in cellular transformation assays and an in vivo mouse bone marrow transplantation model. It exhibits many similar phenotypic features to T618I, including ligand independence and altered patterns of O-glycosylation—despite the transmembrane location of T640 preventing access by GalNAc transferase enzymes. Cells transformed by the T640N mutation are sensitive to JAK kinase inhibition to a similar degree as cells transformed by CSF3R T618I. Conclusions: Because of its similarities to CSF3R T618I, the T640N mutation likely has diagnostic and therapeutic relevance in CNL/aCML. Clin Cancer Res; 22(3); 757–64. ©2015 AACR.

Collaboration


Dive into the Julia E. Maxson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge