Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Etchin is active.

Publication


Featured researches published by Julia Etchin.


Science | 2014

An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element

Marc R. Mansour; Brian J. Abraham; Lars Anders; Alla Berezovskaya; Alejandro Gutierrez; Adam D. Durbin; Julia Etchin; Lee N. Lawton; Stephen E. Sallan; Lewis B. Silverman; Mignon L. Loh; Stephen P. Hunger; Takaomi Sanda; Richard A. Young; A. Thomas Look

In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell’s transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase–binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells. Leukemia-associated mutations drive cell growth by creating a powerful transcriptional enhancer upstream of an oncogene. [Also see Perspective by Vähärautio and Taipale] A super-enhancer in leukemia development Human cancer genome projects have provided a wealth of information about mutations that reside within the coding regions of genes and drive tumor growth by functionally altering protein products. However, this mutational portrait of cancer is incomplete: A growing number of mutations are being found within gene regulatory regions. Mansour et al. present an intriguing example of this in a study of a childhood cancer, T-cell acute lymphoblastic leukemia (see the Perspective by Vähärautio and Taipale). An oncogene known to drive the growth of this cancer is expressed at high levels in the leukemic cells because the cells harbor mutations that create a powerful superenhancer (a DNA sequence that activates transcription) upstream of the oncogene. Science, this issue p. 1373; see also p. 1291


Journal of Biological Chemistry | 2006

Recombination Mediator and Rad51 Targeting Activities of a Human BRCA2 Polypeptide

Joseph San Filippo; Peter Chi; Michael G. Sehorn; Julia Etchin; Lumir Krejci; Patrick Sung

BRCA2 likely exerts its tumor suppressor function by enhancing the efficiency of the homology-directed repair of injured chromosomes. To help define the DNA repair role of BRCA2, we expressed and purified a polypeptide, BRC3/4-DBD, that harbors its BRC3 and BRC4 repeats and DNA binding domain. BRC3/4-DBD interacted with hRad51 and bound DNA with a distinct preference for single-stranded (ss) DNA. Importantly we demonstrated by biochemical means and electron microscopy that BRC3/4-DBD nucleates hRad51 onto ssDNA and acts as a recombination mediator in enabling hRad51 to utilize replication protein A-coated ssDNA as recombination substrate. These functions of BRC3/4-DBD required both the BRC repeats and the BRCA2 DNA binding domain. The results thus clarify the role of BRCA2 in Rad51-dependent DNA recombination and repair, and the experimental strategies described herein should be valuable for systematically deciphering this BRCA2 function.


Leukemia | 2013

Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells

Julia Etchin; Qi Sun; Alex Kentsis; Alicia Farmer; Zi Chao Zhang; Takaomi Sanda; Marc R. Mansour; C Barcelo; Dilara McCauley; Michael Kauffman; Sharon Shacham; Amanda L. Christie; Andrew L. Kung; Scott J. Rodig; Yuh Min Chook; A T Look

Drugs that target the chief mediator of nuclear export, chromosome region maintenance 1 protein (CRM1) have potential as therapeutics for leukemia, but existing CRM1 inhibitors show variable potencies and a broad range of cytotoxic effects. Here, we report the structural analysis and antileukemic activity of a new generation of small-molecule inhibitors of CRM1. Designated selective inhibitors of nuclear export (SINE), these compounds were developed using molecular modeling to screen a small virtual library of compounds against the nuclear export signal (NES) groove of CRM1. The 2.2-Å crystal structure of the CRM1-Ran-RanBP1 complex bound to KPT-251, a representative molecule of this class of inhibitors, shows that the drug occupies part of the groove in CRM1 that is usually occupied by the NES, but penetrates much deeper into the groove and blocks CRM1-directed protein export. SINE inhibitors exhibit potent antileukemic activity, inducing apoptosis at nanomolar concentrations in a panel of 14 human acute myeloid leukemia (AML) cell lines representing different molecular subtypes of the disease. When administered orally to immunodeficient mice engrafted with human AML cells, KPT-251 had potent antileukemic activity with negligible toxicity to normal hematopoietic cells. Thus, KPT-SINE CRM1 antagonists represent a novel class of drugs that warrant further testing in AML patients.


British Journal of Haematology | 2013

KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia

Julia Etchin; Takaomi Sanda; Marc R. Mansour; Alex Kentsis; Joan Montero; Bonnie Thi Le; Amanda L. Christie; Dilara McCauley; Scott J. Rodig; Michael Kauffman; Sharon Shacham; Richard Stone; Anthony Letai; Andrew L. Kung; A. Thomas Look

This study explored the anti‐leukaemic efficacy of novel irreversible inhibitors of the major nuclear export receptor, chromosome region maintenance 1 (CRM1, also termed XPO1). We found that these novel CRM1 antagonists, termed SINE (Selective Inhibitors of Nuclear Export), induced rapid apoptosis at low nanomolar concentrations in a panel of 14 human T‐cell acute lymphoblastic leukaemia (T‐ALL) cell lines representing different molecular subtypes of the disease. To assess in vivo anti‐leukaemia cell activity, we engrafted immunodeficient mice intravenously with the human T‐ALL MOLT‐4 cells, which harbour activating mutations of NOTCH1 and NRAS as well as loss of function of the CDKN2A, PTEN and TP53 tumour suppressors and express a high level of oncogenic transcription factor TAL1. Importantly, we examined the in vivo anti‐leukaemic efficacy of the clinical SINE compound KPT‐330 against T‐ALL and acute myeloid leukaemia (AML) cells. These studies demonstrated striking in vivo activity of KPT‐330 against T‐ALL and AML cells, with little toxicity to normal murine haematopoietic cells. Taken together, our results show that SINE CRM1 antagonists represent promising ‘first‐in‐class’ drugs with a novel mechanism of action and wide therapeutic index, and imply that drugs of this class show promise for the targeted therapy of T‐ALL and AML.


Cancer Cell | 2016

The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo-Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.


Methods in Cell Biology | 2011

Zebrafish as a Model for the Study of Human Cancer

Julia Etchin; John P. Kanki; A. Thomas Look

Zebrafish provide an exciting animal model system for the study of human cancers. During the last few years many zebrafish models of cancer have been generated that recapitulate human hematologic malignancies and solid tumors. Concurrent technological advances have significantly improved the genetic tractability and unique advantage of in vivo imaging in zebrafish, providing a means to dissect the molecular pathways underlying tumor initiation, progression and metastasis. Comparisons of cancer-associated gene expression profiles have demonstrated a high degree of similarity in the gene signatures of specific types of tumor cells in fish and humans, indicating that the contributing genetic pathways leading to cancer are evolutionarily conserved. Furthermore, the high fecundity, optical clarity and small embryo size of zebrafish continue to make it particularly amenable to performing whole-organism small molecule screens to identify targets for therapeutic development. This chapter reviews a wide array of these zebrafish cancer models and illustrates the advantages of the zebrafish system for exploring the molecular mechanisms governing cancer-related cellular processes.


Leukemia | 2016

Activity of a selective inhibitor of nuclear export, selinexor (KPT-330), against AML-initiating cells engrafted into immunosuppressed NSG mice.

Julia Etchin; Joan Montero; Alla Berezovskaya; Bonnie Thi Le; Alex Kentsis; Amanda L. Christie; Amy Saur Conway; Wen Chen; Casie Reed; Marc R. Mansour; Christopher Ng; Sophia Adamia; Scott J. Rodig; Ilene Galinsky; Richard Stone; B Klebanov; Yosef Landesman; Michael Kauffman; Sharon Shacham; Andrew L. Kung; Jean C.Y. Wang; Anthony Letai; A T Look

Currently available combination chemotherapy for acute myeloid leukemia (AML) often fails to result in long-term remissions, emphasizing the need for novel therapeutic strategies. We reasoned that targeted inhibition of a prominent nuclear exporter, XPO1/CRM1, could eradicate self-renewing leukemia-initiating cells (LICs) whose survival depends on timely XPO1-mediated transport of specific protein and RNA cargoes. Using an immunosuppressed mouse model bearing primary patient-derived AML cells, we demonstrate that selinexor (KPT-330), an oral antagonist of XPO1 that is currently in clinical trials, has strong activity against primary AML cells while sparing normal stem and progenitor cells. Importantly, limiting dilution transplantation assays showed that this cytotoxic activity is not limited to the rapidly proliferating bulk population of leukemic cells but extends to the LICs, whose inherent drug resistance and unrestricted self-renewal capacity has been implicated in the difficulty of curing AML patients with conventional chemotherapy alone.


Cancer Cell | 2016

Erratum: The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice (Cancer Cell (2016) 29 (574–586))

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

Elizabeth C. Townsend, Mark A. Murakami, Alexandra Christodoulou, Amanda L. Christie, Johannes Köster, Tiffany A. DeSouza, Elizabeth A. Morgan, Scott P. Kallgren, Huiyun Liu, Shuo-Chieh Wu, Olivia Plana, Joan Montero, Kristen E. Stevenson, Prakash Rao, Raga Vadhi, Michael Andreeff, Philippe Armand, Karen K. Ballen, Patrizia Barzaghi-Rinaudo, Sarah Cahill, Rachael A. Clark, Vesselina G. Cooke, Matthew S. Davids, Daniel J. DeAngelo, David M. Dorfman, Hilary Eaton, Benjamin L. Ebert, Julia Etchin, Brant Firestone, David C. Fisher, Arnold S. Freedman, Ilene A. Galinsky, Hui Gao, Jacqueline S. Garcia, Francine Garnache-Ottou, Timothy A. Graubert, Alejandro Gutierrez, Ensar Halilovic, Marian H. Harris, Zachary T. Herbert, Steven M. Horwitz, Giorgio Inghirami, Andrew M. Intlekofer, Moriko Ito, Shai Izraeli, Eric D. Jacobsen, Caron A. Jacobson, Sébastien Jeay, Irmela Jeremias, Michelle A. Kelliher, Raphael Koch, Marina Konopleva, Nadja Kopp, Steven M. Kornblau, Andrew L. Kung, Thomas S. Kupper, Nicole R. LeBoeuf, Ann S. LaCasce, Emma Lees, Loretta S. Li, A. Thomas Look, Masato Murakami, Markus Muschen, Donna Neuberg, Samuel Y. Ng, Oreofe O. Odejide, Stuart H. Orkin, Rachel R. Paquette, Andrew E. Place, Justine E. Roderick, Jeremy A. Ryan, Stephen E. Sallan, Brent Shoji, Lewis B. Silverman, Robert J. Soiffer, David P. Steensma, Kimberly Stegmaier, Richard M. Stone, Jerome Tamburini, Aaron R. Thorner, Paul van Hummelen, Martha Wadleigh, Marion Wiesmann, Andrew P. Weng, Jens U. Wuerthner, David A. Williams, Bruce M. Wollison, Andrew A. Lane, Anthony Letai, Monica M. Bertagnolli, Jerome Ritz, Myles Brown, Henry Long, Jon C. Aster, Margaret A. Shipp, James D. Griffin, and David M. Weinstock* *Correspondence: [email protected] http://dx.doi.org/10.1016/j.ccell.2016.06.008


Leukemia | 2017

KPT-8602, a second-generation inhibitor of XPO1-mediated nuclear export, is well tolerated and highly active against AML blasts and leukemia-initiating cells.

Julia Etchin; Alla Berezovskaya; Amy Saur Conway; Ilene Galinsky; Richard Stone; E Baloglu; William Senapedis; Yosef Landesman; Michael Kauffman; Sharon Shacham; Jean C.Y. Wang; A T Look

Acute myeloid leukemia (AML) is a clonal hematologic malignant disease of developing myeloid cells that have acquired aberrant survival, uncontrolled proliferation and a block in normal hematopoietic cell differentiation. Standard chemotherapy often induces remissions in AML patients, but the disease frequently relapses due to incomplete targeting of leukemia-initiating cells (LICs), emphasizing the need for novel effective treatments. Exportin 1 (XPO1)-mediated nuclear export, which is inhibited by the drug selinexor, is an attractive new therapeutic target in AML. Selinexor has shown impressive activity in Phase I/II clinical trials for AML. Here we report the anti-leukemic efficacy and tolerability of KPT-8602, a second-generation XPO1 inhibitor. KPT-8602 demonstrates substantially reduced brain penetration compared to selinexor, with resultant attenuation of the central nervous system mediated side effects of anorexia and weight loss. Due to its improved tolerability profile, KPT-8602 can be given daily compared to the two or three times weekly regimen of selinexor, and exhibits greater anti-leukemic efficacy against both leukemic blasts and LICs in AML patient-derived xenograft models. Importantly, normal hematopoietic stem and progenitor cell (HSPC) frequency is not significantly reduced by KPT-8602, providing a therapeutic window for elimination of relapse-driving LICs while sparing normal HSPCs. These findings strongly endorse clinical testing of KPT-8602 in patients with relapsed and refractory AML.


British Journal of Haematology | 2017

Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia

Koshi Akahane; Zhaodong Li; Julia Etchin; Alla Berezovskaya; Evisa Gjini; Craig E. Masse; Wenyan Miao; Jennifer Rocnik; Rosana Kapeller; Jeremy R. Greenwood; Hong Tiv; Takaomi Sanda; David M. Weinstock; A. Thomas Look

Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T‐cell acute lymphoblastic leukaemia (T‐ALL) cells. Here we demonstrate the anti‐leukaemic activity of a novel TYK2 inhibitor, NDI‐031301. NDI‐031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T‐ALL cell lines. NDI‐031301 treatment of human T‐ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI‐031301 treatment uniquely leads to activation of three mitogen‐activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI‐031301 treatment and was responsible for NDI‐031301‐induced T‐ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI‐031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT‐K1 T‐ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T‐ALL.

Collaboration


Dive into the Julia Etchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc R. Mansour

University College London

View shared research outputs
Top Co-Authors

Avatar

Takaomi Sanda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Kentsis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Kung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge