Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Freedman Silvernail is active.

Publication


Featured researches published by Julia Freedman Silvernail.


Footwear Science | 2013

Footfall patterns during barefoot running on harder and softer surfaces

Allison H. Gruber; Julia Freedman Silvernail; Peter Brueggemann; Eric Rohr; Joseph Hamill

It has been suggested that the development of a thick, soft midsole of running shoes over the past 30 years has been primarily responsible for the majority of runners adopting a rearfoot or heel-toe footfall pattern thus deviating from a more ‘natural’ forefoot pattern. The purpose of this study was to determine the freely chosen footfall pattern when running barefoot on a harder versus a softer surface. Forty habitual rearfoot runners performed two running conditions: barefoot over a harder surface and barefoot over a softer surface. Three-dimensional motion analysis and ground reaction force data were collected to measure the ankle angle, vertical impact peak and strike index. The kinematic and kinetic parameters were used to confirm the footfall pattern in each condition. Only 20% per cent of the participants ran with a midfoot or forefoot pattern on the soft surface whereas 65% of the participants ran with a midfoot or forefoot pattern when running on the hard surface. Out of the 80% of participants that maintained a rearfoot pattern on the soft surface, 43% of these participants ran with a midfoot or forefoot pattern on the hard surface. These results suggest that, while running barefoot, the hardness of the running surface may be a significant factor causing an alteration in a runners footfall pattern.


Gait & Posture | 2013

The influence of body mass index and velocity on knee biomechanics during walking.

Julia Freedman Silvernail; Clare E. Milner; Dixie L. Thompson; Songning Zhang; Xiaopeng Zhao

Obesity has been associated with both the development and progression of knee osteoarthritis. Being overweight or obese from a young age is likely to decrease the age of onset for co-morbidities of obesity such as osteoarthritis. However, research on osteoarthritis has thus far focused on older adults. Therefore, the purpose of this study was to determine whether young adults who are overweight or obese exhibit biomechanical risk factors for knee osteoarthritis at either their preferred walking velocity or at 1m/s, which was slower than the preferred velocity. Thirty healthy young adults formed three equal groups according to body mass index. Three dimensional kinetics and kinematics were collected while participants walked overground at both velocities. Joint moments were normalized to fat free weight and height. The preferred walking velocity of obese participants was slower than that of normal weight individuals. There were no differences in knee flexion excursion, peak knee flexion angle, normalized peak knee flexion moment or normalized peak knee adduction moment among groups. Obese participants walked with lower peak knee adduction angle than both overweight and normal body mass index participants and several shifted towards knee abduction. All groups had smaller knee flexion excursion, peak knee flexion angle, peak knee flexion moment and peak knee adduction moment at 1m/s compared to preferred walking velocity. Overall, young and otherwise healthy overweight and obese participants have knee biomechanics during gait at preferred and slow walking velocities that are comparable to normal weight adults.


Medicine and Science in Sports and Exercise | 2015

Running Mechanics and Variability with Aging.

Julia Freedman Silvernail; Katherine A. Boyer; Eric Rohr; Gert-Peter Brüggemann; Joseph Hamill

INTRODUCTION As the elderly population in the United States continues to grow, issues related to maintenance of health become increasingly important. Physical activity has positive benefits for healthy aging. Running, a popular form of exercise, is associated with the risk of developing injury, especially in older runners. Initial differences between older and younger runners have been observed, but these were observed without consideration of other differences between groups, such as running mileage. PURPOSE This study aims to compare running mechanics and lower-extremity coordination variability in matched groups of healthy younger and healthy older runners. METHODS Three-dimensional kinetics and kinematics were collected while 14 older adults (45-65 yr) and younger adults (18-35 yr) ran overground at 3.5 m·s. Knee, ankle, and hip joint angles and moments were determined. Discrete measures at foot strike (maximum and minimum) were determined and compared between groups. Segment angles during stance were utilized to calculate segment coordination variability between pelvis and thigh, thigh and shank, and shank and foot, using a modified vector coding technique. RESULTS Knee and ankle joint angles were similar between groups (P > 0.05). Older runners had greater hip range of motion (P = 0.01) and peak hip flexion (P = 0.001) at a more extended hip position than younger runners. Older runners had smaller ankle plantarflexion moment (P = 0.04) and hip rotational moment (P = 0.005) than younger runners. There were no between-group differences in any of the variability measures (P > 0.05). CONCLUSIONS Runners appear to maintain movement patterns and variability during running with increasing age, indicating that running itself may be contributing to maintenance of health among older runners in the current study.


Journal of Sports Sciences | 2016

Changes in coordination and its variability with an increase in running cadence

Jocelyn F. Hafer; Julia Freedman Silvernail; Howard J. Hillstrom; Katherine A. Boyer

ABSTRACT Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh–shank and shank–foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury.


Journal of Human Kinetics | 2015

Comparison of Lower Limb Segments Kinematics in a Taekwondo Kick. An Approach to the Proximal to Distal Motion

Isaac Estevan; Coral Falco; Julia Freedman Silvernail; Daniel Jandacka

Abstract In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.


Journal of Sports Sciences | 2017

Age and sex influences on running mechanics and coordination variability

Katherine A. Boyer; Julia Freedman Silvernail; Joseph Hamill

ABSTRACT The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s−1. A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex–age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh–shank transverse plane couple but greater coordination variability for the shank rotation–foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.


Footwear Science | 2013

Comparison of classification methods to determine footfall pattern

Allison H. Gruber; Katherine A. Boyer; Julia Freedman Silvernail; Joseph Hamill

dition compared to the indoor shoe condition on turf suggests that the main reason for the increase in performance was due to the increased compliance of the artificial turf. When wearing the same indoor shoes, less peak traction was utilised to accelerate on the turf compared to the lab floor, and even less was utilised when wearing cleats on the turf. It is not clear why maximal effort acceleration required less traction on the artificial turf, especially given that the subjects sprinted faster. The ground reaction impulse data do not explain the performance differences. This study has shown that artificial turf allows athletes to accelerate faster, and that this is likely related to increased surface compliance. However, kinetic data of one foot-strike were unable to further explain the mechanism by which this performance enhancement occurred.


Human Movement Science | 2018

Effects of Treadmill Running Velocity on Lower Extremity Coordination Variability in Healthy Runners

Joshua P. Bailey; Julia Freedman Silvernail; Janet S. Dufek; James W. Navalta; John A. Mercer

With a growing interest in coordination variability and its role in endurance running, it is important to identify the effect of running velocity. The purpose of the current study was to investigate the effect of treadmill running velocity on the coordination and variability of coordination of lower extremity couplings of healthy runners during stance. Fourteen apparently healthy runners ran on a split-belt force instrumented treadmill at five different velocities. Continuous relative phase (CRP) was used to quantify coordination and variability (vCRP) between lower extremity couplings of the right limb (thigh-shank, thigh-foot, shank-foot) during three phases of stance (loading, mid stance, and propulsion). Multiple one-way repeated measure ANOVAs were conducted to identify differences among velocity conditions at each phase and discrete events (initial foot contact, peak knee flexion during stance, and toe-off). Thigh internal/external rotation (IR/ER)-Shank abduction/adduction (AB/AD) coupling was different during the propulsive phase (p = 0.02). Thigh flexion/extension-Shank flexion/extension showed the greatest differences in vCRP across velocity conditions with differences occurring during loading phase, mid stance, propulsive phase, and peak flexion (p < 0.05). Additionally, significant differences were seen in Thigh FL/EX-Shank FL/EX (toe-off, p = 0.01) and Thigh FL/EX-Foot inversion/eversion (IN/EV) (toe-off, p = 0.032). Interestingly, the decreases in vCRP values were accompanied by changes in center of mass vertical motion during stance, but not knee flexion angles. Increases in running velocity led to a more constrained running pattern through a reduction in degrees of freedom.


Journal of Sports Sciences | 2016

Segment coupling and coordination variability analyses of the roundhouse kick in taekwondo relative to the initial stance position

Isaac Estevan; Julia Freedman Silvernail; Daniel Jandacka; Coral Falco

ABSTRACT The initial stance position (ISP) has been observed as a factor affecting the execution technique during taekwondo kicks. In the present study, authors aimed to analyse a roundhouse kick to the chest by measuring movement coordination and the variability of coordination and comparing this across the different ISP (0°, 45° and 90°). Eight experienced taekwondo athletes performed consecutive kicking trials in random order from every of the three relative positions. The execution was divided into three phases (stance, first swing and second swing phase). A motion capture system was used to measure athletes’ angular displacement of pelvis and thigh. A modified vector coding technique was used to quantify the coordination of the segments which contributed to the overall movement. The variability of this coordination (CV) for each ISP was also calculated. Comparative analysis showed that during the stance phase in the transverse plane, athletes coordinated movement of the trunk and thigh with a higher frequency of in-phase and lower frequency of exclusive thigh rotation in the 0° stance than the 90° stance position (P < 0.05). CV was also influenced by the different ISP. During the first swing and the majority of the second swing phase, predominant in-phase coordination of the pelvis and thigh was observed. Including exercises that require in-phase movement could not only help athletes to acquire coordination stability but also efficiency. The existence of a constraint such as ISP implies an increase of the variability when the athletes have to kick from ISP they are not used to adopt (i.e., 0° and 90° ISP) as an evidence of adaptability in the athletes’ execution technique.


Sports Biomechanics | 2018

Understanding the influence of perceived fatigue on coordination during endurance running

Joshua P. Bailey; Janet S. Dufek; Julia Freedman Silvernail; James W. Navalta; John A. Mercer

ABSTRACT During the course of a training programme, runners will typically increase running velocity and volume possibly encountering fatigue during a run, which is characterised as a feeling of general tiredness. The purpose of the current study was to identify whether or not level of perceived fatigue affects coordination and coordination variability in healthy runners during the recovery velocity of an endurance interval run. A total of 20 endurance runners completed a 1-hour run that included running velocity intervals at 75% of estimated 10 k race pace (5 minutes) and estimated 10 k race pace (1 minute). After each run, participants completed a fatigue questionnaire and were grouped based on their post-run self-reported perceived fatigue. 3D motion capture data were collected during the run and analysed to generate coordination patterns and variability of the patterns as dependent variables. Multiple mixed model ANOVAs were conducted to test for differences between perceived fatigue groups. Coordination and variability differences were reported in a number of couplings during transition phases (late and early stance) and events (toe-off and foot contact) of the gait cycle. It was concluded that the level of perceived fatigue affected coordination and coordination variability during the recovery velocity of a 1-hour interval run.

Collaboration


Dive into the Julia Freedman Silvernail's collaboration.

Top Co-Authors

Avatar

Joseph Hamill

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Boyer

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Coral Falco

Universidad Católica de Valencia San Vicente Mártir

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Brueggemann

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Allison H. Gruber

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge