Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Geller is active.

Publication


Featured researches published by Julia Geller.


PLOS ONE | 2012

Detection and genetic characterization of relapsing fever spirochete Borrelia miyamotoi in Estonian ticks.

Julia Geller; Lidia Nazarova; Olga Katargina; Lilian Järvekülg; Natalya Fomenko; Irina Golovljova

During the years 2008–2010 I. ricinus and I. persulcatus ticks were collected from 64 sites in mainland Estonia and on the island Saaremaa. Presence of B. miyamotoi was found in 0.9% (23/2622) of ticks. The prevalence in I. persulcatus and I. ricinus ticks differed significantly, 2.7% (15/561) and 0.4% (8/2061), respectively. The highest prevalence rates were in found South-Eastern Estonia in an area of I. persulcatus and I. ricinus sympatry and varied from 1.4% (1/73) to 2.8% (5/178). Co-infections with B. burgdorferi s.l. group spirochetes and tick-borne encephalitis virus were also revealed. Genetic characterization of partial 16S rRNA, p66 and glpQ genes demonstrated that Estonian sequences belong to two types of B. miyamotoi and cluster with sequences from Europe and the European part of Russia, as well as with sequences from Siberia, Asia and Japan, here designated as European and Asian types, respectively. Estonian sequences of the European type were obtained from I. ricinus ticks only, whereas the Asian type of B. miyamotoi was shown for both tick species in the sympatric regions.


Clinical Microbiology and Infection | 2012

Identification of Anaplasma phagocytophilum in tick populations in Estonia, the European part of Russia and Belarus.

Olga Katargina; Julia Geller; A. Alekseev; H. Dubinina; G. Efremova; N. Mishaeva; Veera Vasilenko; Tatiana Kuznetsova; Lilian Järvekülg; S. Vene; Åke Lundkvist; Irina Golovljova

Anaplasma phagocytophilum is associated with diseases of goats, sheep, cattle, dogs and horses. In the beginning of the 1990s it was identified as a human pathogen, causing human granulocytic anaplasmosis (HGA) in the USA, Europe and the far east of Russia. A. phagocytophilum is maintained in nature in an enzootic cycle including ticks as the main vector and a wide range of mammalian species as reservoirs. Ixodes ricinus and I. persulcatus ticks were collected in Estonia, Belarus and the European part of Russia and screened for the presence of A. phagocytophilum by real-time PCR. Positive samples were found only among I. ricinus, in 13.4% in the European part of Russia, 4.2% in Belarus, 1.7% in mainland Estonia and 2.6% on Saaremaa Island. Positive samples were sequenced for partial 16S rRNA, groESL and ankA genes and phylogenetic analyses were performed. The results showed that A. phagocytophilum circulating in Eastern Europe belongs to different groESL lineages and 16S rRNA gene variants and also consists of variable numbers of repetitive elements within the ankA gene.


Parasites & Vectors | 2014

Genetic characterization of the human relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease spirochetes in France.

Jean-François Cosson; Lorraine Michelet; Julien Chotte; Evelyne Le Naour; Martine Cote; Elodie Devillers; Marie-Lazarine Poulle; Dominique Huet; Maxime Galan; Julia Geller; Sara Moutailler; Muriel Vayssier-Taussat

BackgroundIn France as elsewhere in Europe the most prevalent TBD in humans is Lyme borreliosis, caused by different bacterial species belonging to Borrelia burgdorferi sensu lato complex and transmitted by the most important tick species in France, Ixodes ricinus. However, the diagnosis of Lyme disease is not always confirmed and unexplained syndromes occurring after tick bites have become an important issue. Recently, B. miyamotoi belonging to the relapsing fever group and transmitted by the same Ixodes species has been involved in human disease in Russia, the USA and the Netherlands. In the present study, we investigate the presence of B. miyamotoi along with other Lyme Borreliosis spirochetes, in ticks and possible animal reservoirs collected in France.MethodsWe analyzed 268 ticks (Ixodes ricinus) and 72 bank voles (Myodes glareolus) collected and trapped in France for the presence of DNA from B. miyamotoi as well as from Lyme spirochetes using q-PCR and specific primers and probes. We then compared the French genotypes with those found in other European countries.ResultsWe found that 3% of ticks and 5.55% of bank voles were found infected by the same B. miyamotoi genotype, while co-infection with other Lyme spirochetes (B. garinii) was identified in 12% of B. miyamotoi infected ticks. Sequencing showed that ticks and rodents carried the same genotype as those recently characterized in a sick person in the Netherlands.ConclusionsThe genotype of B. miyamotoi circulating in ticks and bank voles in France is identical to those already described in ticks from Western Europe and to the genotype isolated from a sick person in The Netherlands. This results suggests that even though no human cases have been reported in France, surveillance has to be improved. Moreover, we showed that ticks could simultaneously carry B. miyamotoi and Lyme disease spirochetes, increasing the problem of co-infection in humans.


PLOS ONE | 2013

Detection and Characterization of Tick-Borne Encephalitis Virus in Baltic Countries and Eastern Poland

Olga Katargina; Stanislava Russakova; Julia Geller; Macije Kondrusik; Zajkowska J; Milda Zygutiene; Antra Bormane; Julia Trofimova; Irina Golovljova

Ticks were collected from the vegetation in the Baltic countries Estonia, Latvia, Lithuania and eastern Poland and analyzed for the presence of tick-borne encephalitis virus (TBEV) by amplification of the partial E and NS3 genes. In Estonia we found statistically significant differences in the TBEV prevalence between I. persulcatus and I. ricinus ticks (4.23% and 0.42%, respectively). In Latvia, the difference in TBEV prevalence between the two species was not statistically significant (1.02% for I. persulcatus and 1.51% for I. ricinus, respectively). In Lithuania and Poland TBEV was detected in 0.24% and 0.11% of I. ricinus ticks, respectively. Genetic characterization of the partial E and NS3 sequences demonstrated that the TBEV strains belonged to the European subtype in all countries, as well as to the Siberian subtype in Estonia. We also found that in areas where ranges of two tick species overlap, the TBEV subtypes may be detected not only in their natural vector, but also in sympatric tick species.


Vector-borne and Zoonotic Diseases | 2013

Tick-Borne Pathogens in Ticks Feeding on Migratory Passerines in Western Part of Estonia

Julia Geller; Lidia Nazarova; Olga Katargina; Agu Leivits; Lilian Järvekülg; Irina Golovljova

During southward migration in the years 2006-2009, 178 migratory passerines of 24 bird species infested with ticks were captured at bird stations in Western Estonia. In total, 249 nymphal ticks were removed and analyzed individually for the presence of Borrelia burgdorferi sensu lato (s.l.), tick-borne encephalitis virus (TBEV), and Anaplasma phagocytophilum. The majority of ticks were collected from Acrocephalus (58%), Turdus (13%), Sylvia (8%), and Parus (6%) bird species. Tick-borne pathogens were detected in nymphs removed from Acrocephalus, Turdus, and Parus bird species. TBEV of the European subtype was detected in 1 I. ricinus nymph removed from A. palustris. B. burgdorferi s.l. DNA was found in 11 ticks (4.4%) collected from Turdus and Parus species. Bird-associated B. garinii and B. valaisiana were detected in I. ricinus nymphs removed from T. merula. Rodent-associated B. afzelii was detected in 3 I. ricinus nymphs from 2 P. major birds. One of the B. afzelii-positive nymphs was infected with a mix of 2 B. afzelii strains, whereas 1 of these strains was also detected in another nymph feeding on the same great tit. The sharing of the same B. afzelii strain by 2 nymphs indicates a possible transmission of B. afzelii by co-feeding on a bird. A. phagocytophilum DNA was detected in 1 I. ricinus nymph feeding on a T. iliacus. The results of the study confirm the possible role of migratory birds in the dispersal of ticks infected with tick-borne pathogens along the southward migration route via Estonia.


Parasites & Vectors | 2013

Borrelia burgdorferi sensu lato prevalence in tick populations in Estonia

Julia Geller; Lidia Nazarova; Olga Katargina; Irina Golovljova

BackgroundEstonia is located in a unique area of co-distribution of Ixodes ricinus and I. persulcatus, which are the main tick vectors of Borrelia burgdorferi sensu lato. In the last decade, the incidence rate of Lyme borreliosis in Estonia has increased dramatically up to 115.4 per 100,000 in 2012. Here we present the first survey of the presence, the prevalence and genetic characteristics of B. burgdorferi s.l. complex spirochetes in the tick population in Estonia.MethodsDuring the years 2006–2009, 2833 unfed Ixodes ricinus and I. persulcatus were collected from 43 sites in 7 counties in mainland Estonia as well as in 10 sites on the Saaremaa Island. DNA samples from ticks were analyzed individually using nested PCR of the ribosomal 5S-23S spacer region followed by bidirectional sequencing.ResultsThe overall estimated prevalence of B. burgdorferi s.l was 9.7% and varied from 4.9% to 24.2% on the mainland and to 10.7% in Saaremaa Island. Ixodes persulcatus ticks showed significantly higher prevalence rates compared to that in I. ricinus-16.3% and 8.2%, respectively. The most prevalent genospecies was B. afzelii which was detected in 53.5% of Borrelia-positive ticks, followed by B. garinii and B. valaisiana with 26.2% and 5.5%, respectively. Also, B. bavariensis and B. burgdorferi s.s. DNA in single I. ricinus ticks were detected. Borrelia afzelii, B. garinii and B. valaisiana were detected in both tick species. Two genetic subgroups of B. garinii (NT29 and 20047) and two genetic subgroups of B. afzelii (NT28 and VS461) were found to be circulating in all studied regions as well as in both tick species, except B. garinii subgroup NT29, which was found only in I. persulcatus ticks.ConclusionsIn the current study we detected the circulation of five B. burgdorferi s.l. genospecies and estimated the prevalence in ticks in different regions of Estonia. Detection and genetic characterization of Borrelia genospecies, especially those of public health importance, in the natural foci may help assessing high risk areas of human exposure to B. burgdorferi s.l.


Ticks and Tick-borne Diseases | 2015

Detection and identification of Rickettsia species in Ixodes tick populations from Estonia

Olga Katargina; Julia Geller; Anna Ivanova; Kairi Värv; Valentina Tefanova; Sirkka Vene; Åke Lundkvist; Irina Golovljova

A total of 1640 ticks collected in different geographical parts of Estonia were screened for the presence of Rickettsia species DNA by real-time PCR. DNA of Rickettsia was detected in 83 out of 1640 questing ticks with an overall prevalence of 5.1%. The majority of the ticks infected by rickettsiae were Ixodes ricinus (74 of 83), while 9 of the 83 positive ticks were Ixodes persulcatus. For rickettsial species identification, a part of the citrate synthase gltA gene was sequenced. The majority of the positive samples were identified as Rickettsia helvetica (81 out of 83) and two of the samples were identified as Rickettsia monacensis and Candidatus R. tarasevichiae, respectively. Genetic characterization based on the partial gltA gene showed that the Estonian sequences within the R. helvetica, R. monacensis and Candidatus R. tarasevichiae species demonstrated 100% similarity with sequences deposited in GenBank, originating from Rickettsia species distributed over large territories from Europe to Asia.


Ticks and Tick-borne Diseases | 2017

Detection of Candidatus Neoehrlichia mikurensis and Ehrlichia muris in Estonian ticks

Anna Ivanova; Julia Geller; Olga Katargina; Kairi Värv; Åke Lundkvist; Irina Golovljova

So far neglected bacteria like Candidatud Neoehrlichia mikurensis and Ehrlichia muris-like agents get increased attention in the recent past. Ixodid ticks were demonstrated to harbor both of these pathogens. Estonia is populated by two medically important tick species, I. ricinus and I. persulcatus. In this study the presence of E. muris and Candidatus N. mikurensis in these two tick species was investigated. Tick DNA was analyzed by nested PCR and subsequent sequencing for the presence of 16S rRNA of E. muris and Candidatus N. mikurensis. Positive samples were further confirmed by amplification and sequencing of the partial groESL-operon. The obtained partial groESL sequences were used for construction of a maximum likelihood tree. In total, 776 ticks from 36 collection sites situated in 7 counties on the mainland of Estonia and 2 sites situated in one county on the island Saaremaa were collected. 548 were I. ricinus and 228 were I. persulcatus. Only in 5 counties (11 sites) samples positive for the Anaplasmataceae 16S rRNA gene were found. The percentage of Candidatus N. mikurensis positive ticks varied from 1% to 9.1% at different sites. In Eastern and South-Eastern Estonia, the area where I. ricinus and I. persulcatus are sympatric, no Candidatus N. mikurensis was found. Ticks carrying E. muris were found in three counties, the site-specific percentage of positive ticks varied from 1.2% to 25.6%. This is the first study revealing the presence of Candidatus N. mikurensis and E. muris in Estonian ticks. Candidatus N. mikurensis was found only in the western part of the country exclusively in I. ricinus and the phylogenetic analysis revealed close relatedness of the Estonian sequences to other European Candidatus N. mikurensis strains. E. muris was detected mostly in I. persulcatus and only in one I. ricinus in the sympatric area of both tick species. This is in correspondence with the observation that this pathogen is more often found in I. persulcatus than in I. ricinus. This study demonstrates the presence of Candidatus N. mikurensis and E. muris in Estonian ticks and highlights the necessity to raise awareness of symptoms by healthcare professionals.


Ticks and Tick-borne Diseases | 2017

Identification of I. ricinus, I. persulcatus and I. trianguliceps species by multiplex PCR

Kairi Värv; Anna Ivanova; Julia Geller; Jaanus Remm; Kertu Jaik; Nina V. Tikunova; Vera A. Rar; Åke Lundkvist; Irina Golovljova

Correct identification of tick species is an essential requirement for any scientific study engaged in tick-associated research. However, morphological identification can lead to misinterpretations, especially when dealing with vector-host research and sub-adult, engorged or damaged specimens. To overcome this limitation, we developed a novel assay to discriminate between Ixodes ricinus, I. persulcatus and I. trianguliceps species collected from rodents or vegetation, using the second internal transcribed spacer (ITS2) as a genetic marker. This single tube multiplex PCR allows specific amplification of targeted species and produces rapid and accurate results. The specificity was confirmed by sequencing the ITS2 and partial 16S rRNA genes from ticks collected from Estonia, Latvia, Sweden and Russia. We tested the assay in a large-scale experiment, and a total of 1284 ticks removed from rodents and shrews were successfully identified at species level.


Journal of Clinical Virology | 2018

Hepatitis E virus infection in different groups of Estonian patients and people who inject drugs

T. V. Kuznetsova; Anna Ivanova-Pozdejeva; Irina Reshetnjak; Julia Geller; Kairi Värv; Reet Rumvolt; Maria Vikentjeva; Elena V. Trubnikova; Natalia V. Pozdniakova; A. B. Shevelev; Irina Golovljova

BACKGROUND Previously we demonstrated a high prevalence of hepatitis E virus (HEV) in domestic pigs and wild boars, the main reservoir and possible source of HEV infections in humans. But so far there are no reports about spread of HEV in Estonian human population. OBJECTIVES The present study aimed to determine the prevalence and genotyping of HEV in different groups of the Estonian adult population. STUDY DESIGN Totally 1426 human serum samples were tested (763 patients with clinically diagnosed nonA/B/C hepatitis, 176 hemodialysis patients, 282 patients with suspected HEV infection and 205 people who injected drugs (PWID)). Presence of anti-HEVantibodies was assessed by ELISA and confirmed by immunoblotting. All anti-HEV positive sera were analyzed for RNA by qPCR. Amplified ORF2 region was sequenced and used for phylogenetic analysis. RESULTS Antibody assay revealed 49 samples from 1426 (3.4%) with acute (17) or past (32) HEV infection. HEV RNA was detected in 10 anti-HEV IgM positive samples, including 9 samples from patients with suspected HEV infection and 1 hemodialysis patient. Anti-HEV IgG were found in 7.8% patients with suspected HEV infection, in 4% hemodialysis patients, in 2.4% PWID and in 1.96% patients with nonA/B/C hepatitis. All groups demonstrated a trend to share of anti-HEV seroprevalence increasing with age. Phylogenetic analysis of 9 HEV RNA sequences revealed that 3 sequences belonged to HEV genotype 1; 6 ones to genotype 3 (1 sequence belonged to sub-genotype 3a, two ones - sub-genotype 3e, and three ones - to sub-genotype 3f). CONCLUSIONS Despite the high seroprevalence among domestic pigs, no evidence of HEV transmission from Estonian pigs to humans was found. The results of our study suggest that HEV infections in Estonia are most likely associated with travel or with consumption of imported food products.

Collaboration


Dive into the Julia Geller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Katargina

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ivanova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kairi Värv

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lilian Järvekülg

Tallinn University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lidia Nazarova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tatiana Kuznetsova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Veera Vasilenko

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge