Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia H. Bowsher is active.

Publication


Featured researches published by Julia H. Bowsher.


Genome Biology | 2016

Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface

Duane D. McKenna; Erin D. Scully; Yannick Pauchet; Kelli Hoover; Roy Kirsch; Scott M. Geib; Robert F. Mitchell; Robert M. Waterhouse; Seung Joon Ahn; Deanna Arsala; Joshua B. Benoit; Heath Blackmon; Tiffany Bledsoe; Julia H. Bowsher; André Busch; Bernarda Calla; Hsu Chao; Anna K. Childers; Christopher Childers; Dave J. Clarke; Lorna Cohen; Jeffery P. Demuth; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Jian J. Duan; Shannon Dugan; Markus Friedrich; Karl M. Glastad; Michael A. D. Goodisman

BackgroundRelatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle.ResultsThe Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates.ConclusionsAmplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.


The Journal of Experimental Biology | 2015

Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata

Alex S. Torson; George D. Yocum; Joseph P. Rinehart; William P. Kemp; Julia H. Bowsher

ABSTRACT The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures during long-term chilling has been shown to increase survival in many insects. However, the transcripts responsible for this increase in survival have never been characterized. Here, we present the first transcriptome-level analysis of increased longevity under fluctuating temperatures during chilling. Overwintering post-diapause quiescent alfalfa leafcutting bees (Megachile rotundata) were exposed to a constant temperature of 6°C, or 6°C with a daily fluctuation to 20°C. RNA was collected at two different time points, before and after mortality rates began to diverge between temperature treatments. Expression analysis identified differentially regulated transcripts between pairwise comparisons of both treatments and time points. Transcripts functioning in ion homeostasis, metabolic pathways and oxidative stress response were up-regulated in individuals exposed to periodic temperature fluctuations during chilling. The differential expression of these transcripts provides support for the hypotheses that fluctuating temperatures protect against chill injury by reducing oxidative stress and returning ion concentrations and metabolic function to more favorable levels. Additionally, exposure to fluctuating temperatures leads to increased expression of transcripts functioning in the immune response and neurogenesis, providing evidence for additional mechanisms associated with increased survival during chilling in M. rotundata. Summary: Transcripts associated with chill injury, neurological development and longevity are up-regulated in bees exposed to fluctuating temperatures during post-diapause quiescence.


Evolution | 2013

DECIPHERING THE EVOLUTIONARY HISTORY AND DEVELOPMENTAL MECHANISMS OF A COMPLEX SEXUAL ORNAMENT: THE ABDOMINAL APPENDAGES OF SEPSIDAE (DIPTERA)

Julia H. Bowsher; Yuchen Ang; Tanner Ferderer; Rudolf Meier

Male abdomen appendages are a novel trait found within Sepsidae (Diptera). Here we demonstrate that they are likely to have evolved once, were lost three times, and then secondarily gained in one lineage. The developmental basis of these appendages was investigated by counting the number of histoblast cells in each abdominal segment in four species: two that represented the initial instance of appendage evolution, one that has secondarily gained appendages, and one species that did not have appendages. Males of all species with appendages have elevated cell counts for the fourth segment, which gives rise to the appendages. In Perochaeta dikowi, which reacquired the trait, the females also have elevated cell count on the fourth segment despite the fact that females do not develop appendages. The species without appendages has similar cell counts in all segments regardless of sex. These results suggest that the basis for appendage development is shared in males across all species, but the sexual dimorphism is regulated differently in P. dikowi.


BMC Genomics | 2014

A pipeline for the de novo assembly of the Themira biloba (Sepsidae: Diptera) transcriptome using a multiple k-mer length approach

Dacotah Melicher; Alex S. Torson; Ian Dworkin; Julia H. Bowsher

BackgroundThe Sepsidae family of flies is a model for investigating how sexual selection shapes courtship and sexual dimorphism in a comparative framework. However, like many non-model systems, there are few molecular resources available. Large-scale sequencing and assembly have not been performed in any sepsid, and the lack of a closely related genome makes investigation of gene expression challenging. Our goal was to develop an automated pipeline for de novo transcriptome assembly, and to use that pipeline to assemble and analyze the transcriptome of the sepsid Themira biloba.ResultsOur bioinformatics pipeline uses cloud computing services to assemble and analyze the transcriptome with off-site data management, processing, and backup. It uses a multiple k-mer length approach combined with a second meta-assembly to extend transcripts and recover more bases of transcript sequences than standard single k-mer assembly. We used 454 sequencing to generate 1.48 million reads from cDNA generated from embryo, larva, and pupae of T. biloba and assembled a transcriptome consisting of 24,495 contigs. Annotation identified 16,705 transcripts, including those involved in embryogenesis and limb patterning. We assembled transcriptomes from an additional three non-model organisms to demonstrate that our pipeline assembled a higher-quality transcriptome than single k-mer approaches across multiple species.ConclusionsThe pipeline we have developed for assembly and analysis increases contig length, recovers unique transcripts, and assembles more base pairs than other methods through the use of a meta-assembly. The T. biloba transcriptome is a critical resource for performing large-scale RNA-Seq investigations of gene expression patterns, and is the first transcriptome sequenced in this Dipteran family.


Scientific Reports | 2018

A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

Sean D. Schoville; Yolanda H. Chen; Martin Andersson; Joshua B. Benoit; Anita Bhandari; Julia H. Bowsher; Kristian Brevik; Kaat Cappelle; Mei-Ju M. Chen; Anna K. Childers; Christopher Childers; Olivier Christiaens; Justin Clements; Elise M. Didion; Elena N. Elpidina; Patamarerk Engsontia; Markus Friedrich; Inmaculada García-Robles; Richard A. Gibbs; Chandan Goswami; Alessandro Grapputo; Kristina Gruden; Marcin Grynberg; Bernard Henrissat; Emily C. Jennings; Jeffery W. Jones; Megha Kalsi; Sher Afzal Khan; Abhishek Kumar; Fei Li

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Journal of Insect Physiology | 2014

Extended hypoxia in the alfalfa leafcutting bee, Megachile rotundata, increases survival but causes sub-lethal effects

H. Abdelrahman; Joseph P. Rinehart; George D. Yocum; Kendra J. Greenlee; Bryan R. Helm; William P. Kemp; C.H. Schulz; Julia H. Bowsher

Many insects are tolerant of hypoxic conditions, but survival may come at a cost to long-term health. The alfalfa leaf-cutting bee, Megachile rotundata, develops in brood cells inside natural cavities, and may be exposed to hypoxic conditions for extended periods of time. Whether M. rotundata is tolerant of hypoxia, and whether exposure results in sub-lethal effects, has never been investigated. Overwintering M. rotundata prepupae were exposed to 10%, 13%, 17%, 21% and 24% O2 for 11 months. Once adults emerged, five indicators of quality - emergence weight, body size, feeding activity, flight performance, and adult longevity, - were measured to determine whether adult bees that survived past exposure to hypoxia were competent pollinators. M. rotundata prepupae are tolerant of hypoxic condition and have higher survival rates in hypoxia, than in normoxia. Under hypoxia, adult emergence rates did not decrease over the 11 months of the experiment. In contrast, bees reared in normoxia had decreased emergence rates by 8 months, and were dead by 11 months. M. rotundata prepupae exposed to extended hypoxic conditions had similar emergence weight, head width, and cross-thorax distance compared to bees reared in standard 21% oxygen. Despite no significant morphological differences, hypoxia-exposed bees had lower feeding rates and shorter adult lifespans. Hypoxia may play a role in post-diapause physiology of M. rotundata, with prepupae showing better survival under hypoxic conditions. Extended exposure to hypoxia, while not fatal, causes sub-lethal effects in feeding rates and longevity in the adults, indicating that hypoxia tolerance comes at a cost.


The Journal of Experimental Biology | 2017

Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee

Alex S. Torson; George D. Yocum; Joseph P. Rinehart; Sean A. Nash; Kally M. Kvidera; Julia H. Bowsher

ABSTRACT Exposure to stressful low temperatures during development can result in the accumulation of deleterious physiological effects called chill injury. Metabolic imbalances, disruptions in ion homeostasis and oxidative stress contribute to the increased mortality of chill-injured insects. Interestingly, survival can be significantly increased when chill-susceptible insects are exposed to a daily warm-temperature pulse during chilling. We hypothesize that warm pulses allow for the repair of damage associated with chill injury. Here, we describe transcriptional responses during exposure to a fluctuating thermal regime, relative to constant chilled temperatures, during pupal development in the alfalfa leafcutting bee, Megachile rotundata, using a combination of RNA-seq and qPCR. Pupae were exposed to either a constant, chilled temperature of 6°C, or 6°C with a daily pulse of 20°C for 7 days. RNA-seq after experimental treatment revealed differential expression of transcripts involved in construction of cell membranes, oxidation–reduction and various metabolic processes. These mechanisms provide support for shared physiological responses to chill injury across taxa. The large number of differentially expressed transcripts observed after 7 days of treatment suggests that the initial divergence in expression profiles between the two treatments occurred upstream of the time point sampled. Additionally, the differential expression profiles observed in this study show little overlap with those differentially expressed during temperature stress in the diapause state of M. rotundata. While the mechanisms governing the physiological response to low-temperature stress are shared, the specific transcripts associated with the response differ between life stages. Summary: Transcriptional responses to fluctuating thermal regimes differ between life stages in the alfalfa leafcutting bee, Megachile rotundata.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Metamorphosis is induced by food absence rather than a critical weight in the solitary bee, Osmia lignaria

Bryan R. Helm; Joseph P. Rinehart; George D. Yocum; Kendra J. Greenlee; Julia H. Bowsher

Significance In this study, we characterize the developmental mechanisms shaping body size in the solitary bee pollinator, Osmia lignaria. This study manipulates larval development in a solitary bee to understand how developmental mechanisms shape adult body size. We based our approach on the insect body size model that postulates a critical weight is necessary for normal metamorphosis. However, our study identified food absence as a cue for metamorphosis in this species, rather than a “critical weight.” These data directly challenge the ubiquity of critical weights and offer insights about context dependency of metamorphic regulation. Developmental mechanisms shape size variation in solitary bees, which will have strong effects on their capabilities as pollinators. Body size is an important phenotypic trait that correlates with performance and fitness. For determinate growing insects, body size variation is determined by growth rate and the mechanisms that stop growth at the end of juvenile growth. Endocrine mechanisms regulate growth cessation, and their relative timing along development shapes phenotypic variation in body size and development time. Larval insects are generally hypothesized to initiate metamorphosis once they attain a critical weight. However, the mechanisms underlying the critical weight have not been resolved even for well-studied insect species. More importantly, critical weights may or may not be generalizable across species. In this study, we characterized the developmental aspects of size regulation in the solitary bee, Osmia lignaria. We demonstrate that starvation cues metamorphosis in O. lignaria and that a critical weight does not exist in this species. Larvae initiated pupation <24 h after food was absent. However, even larvae fed ad libitum eventually underwent metamorphosis, suggesting that some secondary mechanism regulates metamorphosis when provisions are not completely consumed. We show that metamorphosis could be induced by precocene treatment in the presence of food, which suggests that this decision is regulated through juvenile hormone signaling. Removing food at different larval masses produced a 10-fold difference in mass between smallest and largest adults. We discuss the implications of body size variation for insect species that are provided with a fixed quantity of provisions, including many bees which have economic value as pollinators.


BMC Biology | 2017

A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

Sean D. Schoville; Yolanda H. Chen; Martin Andersson; Joshua B. Benoit; Anita Bhandari; Julia H. Bowsher; Kristian Brevik; Kaat Cappelle; Mei-Ju M. Chen; Anna K. Childers; Christopher Childers; Olivier Christiaens; Justin Clements; Elise M. Didion; Elena N. Elpidina; Patamarerk Engsontia; Markus Friedrich; Inmaculada García-Robles; Richard A. Gibbs; Chandan Goswami; Alessandro Grapputo; Kristina Gruden; Marcin Grynberg; Bernard Henrissat; Emily C. Jennings; Jeffery W. Jones; Megha Kalsi; Sher Afzal Khan; Abhishek Kumar; Fei Li

Background The Colorado potato beetle, Leptinotarsa decemlineata Say, is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to not only rapidly adapt to a broad range of solanaceaeous plants and variable climates during its global invasion, but, most notably, to rapidly evolve resistance to insecticides (over 50 different compounds in all major classes, in some cases within the first year of use). To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species, using whole-genome sequencing, transcriptome sequencing, and a large community-driven annotation effort. Results We present a 140x coverage whole genome sequence from a single female L. decemlineata, with a reference gene set of 24,740 genes. Transposable elements comprise at least 17% of the genome, and are heavily represented in an analysis of rapidly evolving gene families compared to other Coleoptera. Population genetic analyses provide evidence of high levels of nucleotide diversity, local geographic structure, and recent population growth in pest populations, pointing to the availability of considerable standing genetic variation. These factors may play an important role in rapid evolutionary change. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes (e.g. cysteine peptidase genes) in gut tissues, as well as expansions of the gustatory receptors for bitter tasting plants in the nightshade family, Solanaceae. Despite its notoriety for adapting to insecticides, L. decemlineata has a similar suite of genes involved in resistance (metabolic detoxification and cuticle penetration) compared to other beetles, although expansions in specific cytochrome P450 subfamilies are known to be associated with insecticide resistance. Finally, this beetle has interesting duplications in RNAi genes that might be linked to its high sensitivity to RNAi and could be important in the future development of gene targeted pesticides. Conclusions As a representative of one of the most evolutionarily diverse lineages, the L. decemlineata genome will undoubtedly provide new opportunities for deeper understanding on the ecology, evolution, and management of this species, as well as new opportunities to leverage genomic technologies to understand the basis of a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Biology Open | 2017

The geometric framework for nutrition reveals interactions between protein and carbohydrate during larval growth in honey bees

Bryan R. Helm; Garett P. Slater; Arun Rajamohan; George D. Yocum; Kendra J. Greenlee; Julia H. Bowsher

ABSTRACT In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient. Summary: Protein to carbohydrate ratio affects the survival and growth rate of larval worker honey bees in vitro. Protein and carbohydrate content of food interact in complex ways to alter growth rate, development time and survival in worker bound honey bee larvae.

Collaboration


Dive into the Julia H. Bowsher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kendra J. Greenlee

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Bryan R. Helm

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Anna K. Childers

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Christopher Childers

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex S. Torson

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Tanner Ferderer

North Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge