Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Isabel Tandberg is active.

Publication


Featured researches published by Julia Isabel Tandberg.


Clinical and Vaccine Immunology | 2017

Characterization and Vaccine Potential of Membrane Vesicles Produced by Francisella noatunensis subsp orientalis in an Adult Zebrafish Model

Leidy Lagos; Julia Isabel Tandberg; Urska Repnik; Preben Boysen; Erik Ropstad; Deepa Varkey; Ian T. Paulsen; Hanne C. Winther-Larsen

ABSTRACT Vaccine development against extracellular bacteria has been important for the sustainability of the aquaculture industry. In contrast, infections with intracellular pathogens remain largely an unresolved problem. Francisella noatunensis subsp. orientalis is a Gram-negative, facultative intracellular bacterium that causes the disease francisellosis in fish. Francisellosis is commonly characterized as a chronic granulomatous disease with high morbidity and can result in high mortality depending on the host. In this study, we explored the potential of bacterial membrane vesicles (MVs) as a vaccine agent against F. noatunensis subsp. orientalis. Bacterial MVs are spherical structures naturally released from the membrane of bacteria and are often enriched with selected bacterial components such as toxins and signaling molecules. MVs were isolated from broth-cultured F. noatunensis subsp. orientalis in the present work, and proteomic analysis by mass spectrometry revealed that MVs contained a variety of immunogenic factors, including the intracellular growth proteins IglC and IglB, known to be part of a Francisella pathogenicity island (FPI), as well as outer membrane protein OmpA, chaperonin GroEL, and chaperone ClpB. By using flow cytometry and electron microscopy, we observed that F. noatunensis subsp. orientalis mainly infects myelomonocytic cells, both in vivo and in vitro. Immunization with MVs isolated from F. noatunensis subsp. orientalis protects zebrafish from subsequent challenge with a lethal dose of F. noatunensis subsp. orientalis. To determine if MVs induce a typical acute inflammatory response, mRNA expression levels were assessed by quantitative real-time PCR. Expression of tnfa, il1b, and ifng, as well as mhcii, mpeg1.1, and ighm, was upregulated, thus confirming the immunogenic properties of F. noatunensis subsp. orientalis-derived MVs.


Fish & Shellfish Immunology | 2017

Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model

Julia Isabel Tandberg; Cristian Oliver; Leidy Lagos; Mona Gaarder; Alejandro J. Yáñez; Erik Ropstad; Hanne C. Winther-Larsen

Abstract Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics’ in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnf&agr;, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis. HighlightsMVs protect zebrafish against an acute dose of P. salmonis.MVs induced the gene expression of mpeg1.1, tnf&agr;, il1b, il10 and il6.MV immunized fish displayed a reduced detection of P. salmonis in tissue.


PLOS ONE | 2016

Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

Julia Isabel Tandberg; Leidy Lagos; Petter Langlete; Eva Berger; Anne-Lise Rishovd; Norbert Roos; Deepa Varkey; Ian T. Paulsen; Hanne C. Winther-Larsen

Membrane vesicles (MVs) are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89), Norway (NVI 5692) and Canada (NVI 5892), respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium’s utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.


Diseases of Aquatic Organisms | 2017

Francisella noatunensis ssp. noatunensis iglC deletion mutant protects adult zebrafish challenged with acute mortality dose of wild-type strain

Elisabeth O. Lampe; Julia Isabel Tandberg; Anne-Lise Rishovd; Hanne C. Winther-Larsen

The intracellular fish pathogen Francisella noatunensis remains an unsolved problem for aquaculture worldwide and an efficient vaccine is needed. In Francisella sp., IglC is an important virulence factor necessary for intracellular growth and escape from phagolysosomes. Deletion of the intracellular growth locus C (iglC) in Francisella sp. causes attenuation, but vaccine potential has only been attributed to ΔiglC from Francisella noatunensis ssp. orientalis, a warm-water fish pathogen. A ΔiglC mutant was constructed in the cold-water fish pathogen F. noatunensis ssp. noatunensis (Fnn), which causes francisellosis in Atlantic cod; the mutant was assessed in primary head kidney leucocytes from Atlantic cod. Fluorescence microscopy revealed reduced growth, while qPCR revealed an initial increase followed by a reduction in mutant genomes. Mutant-infected cod leucocytes presented higher interleukin 1 beta (il1β) and interleukin 8 (il8) transcription than wild-type (WT)-infected cells. Two doses of mutant and WT were tested in an adult zebrafish model whereupon 3 × 109 CFU caused acute disease and 3 × 107 CFU caused low mortality regardless of strain. However, splenomegaly developed only in the WT-infected zebrafish. Immunization with 7 × 106 CFU of Fnn ΔiglC protected zebrafish against challenge with a lethal dose of Fnn WT, and bacterial load was minimized within 28 d. Immunized fish had lower interleukin 6 (il6) and il8 transcription in kidney and prolonged interferon-gamma (ifng) transcription in spleens after challenge compared with non-immunized fish. Our data suggest an immunogenic potential of Fnn ΔiglC and indicate important cytokines associated with francisellosis pathogenesis and protection.


Toxicology Letters | 2016

Effects of perfluorinated alkyl acids on cellular responses of MCF-10A mammary epithelial cells in monolayers and on acini formation in vitro

Ruth Halsne; Julia Isabel Tandberg; Viola Hélène Lobert; Gunn Charlotte Østby; Even Thoen; Erik Ropstad; Steven Verhaegen

Perfluorinated alkyl acids (PFAAs) are stable chemicals detected in tissue and serum from various species, including humans, and have been linked to adverse health outcomes. Experimental PFAA exposure in rodents has been associated with changes in mammary gland development. The estrogen receptor (ER)-negative human breast epithelial cell line, MCF-10A, can be grown as monolayer, but also has the ability to form three-dimensional acini in vitro, reflecting aspects of mammary glandular morphogenesis. Cells were exposed to five different PFAAs, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), both in monolayer and acini cultures. In monolayer cultures only the higher concentrations of PFOS, PFNA and PFDA (400-500μM) caused a significant increase in cell death, whereas PFOA and PFUnDA had no effect. Normal acini maturation was negatively impacted by PFOS, PFNA and PFDA already at the lowest concentration tested (0.6μM). Observed effects included loss of organization of the cell clusters and absence of a hollow lumen. Overall, this study demonstrated that PFAAs can interfere with cellular events related to normal development of glandular breast tissue through ER-independent mechanisms.


Frontiers in Cellular and Infection Microbiology | 2017

The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

Cristian Oliver; Mauricio Hernández; Julia Isabel Tandberg; Karla Valenzuela; Leidy Lagos; Ronie E. Haro; Sánchez Patricio Sánchez; Pamela Ruiz; Constanza Sanhueza-Oyarzún; Marcos Cortés; Maria T. Villar; Antonio Artigues; Hanne C. Winther-Larsen; Ruben Avendaño-Herrera; Alejandro J. Yáñez

Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.


Vaccine | 2017

Francisella noatunensis subspecies noatunensis clpB deletion mutant impairs development of francisellosis in a zebrafish model

Elisabeth O. Lampe; Carl Zingmark; Julia Isabel Tandberg; Ida Marie Thrane; Espen Brudal; Anders Sjöstedt; Hanne C. Winther-Larsen

BACKGROUND Francisella noatunensis ssp. noatunensis (F.n.n.) is the causative agent of francisellosis in Atlantic cod and constitutes one of the main challenges for future aquaculture on this species. A facultative intracellular bacterium like F.n.n. exert an immunologic challenge against which live attenuated vaccines in general are most effective. Thus, we constructed a deletion in the F.n.n. clpB gene as ΔclpB mutants are among the most promising vaccine candidates in human pathogenic Francisella. PURPOSE Characterization of F.n.n. ΔclpB using primary Atlantic cod head kidney leukocytes, the zebrafish embryo and adult zebrafish model with focus on potential attenuation, relevant immune responses and immunogenic potential. MAIN RESULTS Interleukin 1 beta transcription in Atlantic cod leukocytes was significantly elevated from 24 to 96 h post infection with F.n.n. ΔclpB compared to F.n.n. wild-type (wt). Growth attenuation of the deletion mutant in zebrafish embryos was observed by fluorescence microscopy and confirmed by genome quantification by qPCR. In the immunization experiment, adult zebrafish were immunized with 7 × 106 CFU of F.n.n. ΔclpB before challenge four weeks later with 6 × 108 CFU of F.n.n. wt. One day after challenge, immunized zebrafish responded with significantly lower interleukin 8 levels compared to the non-immunized control. Immunized fish were protected against the acute mortality observed in non-immunized zebrafish after challenge and bacterial genomes quantified by qPCR were reduced to a minimum 28 days post challenge, indicating protective immunity stimulated by F.n.n. ΔclpB. CONCLUSION Deletion mutation of clpB in F.n.n. causes in vitro and in vivo attenuation and elicits a protective immune response in adult zebrafish against a lethal dose of F.n.n. wt. Taken together, the results presented increases the knowledge on protective immune responses against F.n.n.


Proteome | 2017

Isolation and Characterization of Serum Extracellular Vesicles (EVs) from Atlantic Salmon Infected with Piscirickettsia Salmonis

Leidy Lagos; Julia Isabel Tandberg; Alexander Kashulin; Duncan J. Colquhoun; Henning Sørum; Hanne C. Winther-Larsen

Secretion of extracellular vesicles (EVs) is a common feature of both eukaryotic and prokaryotic cells. Isolated EVs have been shown to contain different types of molecules, including proteins and nucleic acids, and are reported to be key players in intercellular communication. Little is known, however, of EV secretion in fish, or the effect of infection on EV release and content. In the present study, EVs were isolated from the serum of healthy and Piscirickettsia salmonis infected Atlantic salmon in order to evaluate the effect of infection on EV secretion. P. salmonis is facultative intracellular bacterium that causes a systemic infection disease in farmed salmonids. EVs isolated from both infected and non-infected fish had an average diameter of 230–300 nm, as confirmed by transmission electron microscopy, nanoparticle tracking, and flow cytometry. Mass spectrometry identified 180 proteins in serum EVs from both groups of fish. Interestingly, 35 unique proteins were identified in serum EVs isolated from the fish infected with P. salmonis. These unique proteins included proteasomes subunits, granulins, and major histocompatibility class I and II. Our results suggest that EV release could be part of a mechanism in which host stimulatory molecules are released from infected cells to promote an immune response.


Fish & Shellfish Immunology | 2017

Immunomodulatory properties of Concholepas concholepas hemocyanin against francisellosis in a zebrafish model

Leidy Lagos; Julia Isabel Tandberg; María Inés Becker; Hanne C. Winther-Larsen

Abstract The development of vaccines for aquaculture has been an important milestone in providing a continuous and sustainable production. Most of the vaccines currently on the market for aquaculture include oil as adjuvant. Nevertheless, several studies reported an occurrence of side effects after their use in farmed fish. As a result, there is a need for new and improved adjuvants that can stimulate the immune system while causing as few side‐effects as possible. Hemocyanins are versatile macromolecules with strong immunogenic and immunomodulatory properties. Due to these characteristics, hemocyanin from Concholepas concholepas (CCH) has been biochemically characterized and evaluated as vaccine adjuvant in mice and humans. Francisellosis is a chronic granulomatous disease, which can result in high mortality depending on the host. The disease is caused by the facultative intracellular Gram‐negative bacteria Francisella noatunensis, which remains an unsolved problem for the aquaculture, as no efficient vaccines are available. The aim of the present work was to investigate the immunoregulatory properties of CCH against francisellosis in an experimental zebrafish model. When immunized with CCH, zebrafish were protected from subsequent challenge with a lethal dose of Francisella noatunensis subsp. orientalis. Subsequently the mRNA expression levels of several immune‐related genes were studied, including mhcii, il12a, tnf&agr; and ifng1‐1. Taken together, the data report the immunoregulatory properties of CCH and its potential use as a vaccine adjuvant for aquaculture. HighlightsCCH protects zebrafish against an acute dose of F. noatunensis subsp. orientalis.CCH induces the gene expression of mhcii, il12a, tnf&agr; and ifng1‐1.CCH as a potential adjuvant for aquaculture vaccines.


Archive | 2016

VACCINATION WITH OUTER MEMBRANE VESICLES AGAINST INTRACELLULAR PATHOGENS FOR AQUACULTURE

Leidy Lagos; Julia Isabel Tandberg; Urska Repnik; Norbert Roos; Hanne Winhter-Larsen

Collaboration


Dive into the Julia Isabel Tandberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Ropstad

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge