Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Jungnickel is active.

Publication


Featured researches published by Julia Jungnickel.


The Journal of Neuroscience | 2007

Fibroblast Growth Factor (FGF)-2 and FGF Receptor 3 Are Required for the Development of the Substantia Nigra, and FGF-2 Plays a Crucial Role for the Rescue of Dopaminergic Neurons after 6-Hydroxydopamine Lesion

Marco Timmer; Konstantin Cesnulevicius; Christian Winkler; Julia Kolb; Esther Lipokatic-Takacs; Julia Jungnickel; Claudia Grothe

Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinsons disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/−) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2−/− and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2−/− mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.


Molecular and Cellular Neuroscience | 2004

Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury

Julia Jungnickel; Peter Claus; Kathleen Gransalke; Marco Timmer; Claudia Grothe

Basic fibroblast growth factor (FGF-2) is involved in the development, maintenance, and survival of the nervous system. To study the physiological role of endogenous FGF-2 during peripheral nerve regeneration, we analyzed sciatic nerves of FGF-2-deleted mice by using morphometric, morphological, and immunocytochemical methods. Quantification of number and size of myelinated axons in intact sciatic nerves revealed no difference between wild-type and FGF-2 knock-out (ko) animals. One week after nerve crush, FGF-2 ko mice showed about five times more regenerated myelinated axons with increased myelin and axon diameter in comparison to wild-types close to the injury site. In addition, quantitative distribution of macrophages and collapsed myelin profiles suggested faster Wallerian degeneration in FGF-2-deleted mice close to the lesion site. Our results suggest that endogenous FGF-2 is crucially involved in the early phase of peripheral nerve regeneration possibly by regulation of Schwann cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fibroblast growth factor-2 regulates the stability of nuclear bodies

Alexander-Francisco Bruns; Jeroen van Bergeijk; Christina Lorbeer; Anna Nölle; Julia Jungnickel; Claudia Grothe; Peter Claus

Nuclear bodies are distinct subnuclear structures. The survival of motoneuron (SMN) gene is mutated or deleted in patients with the neurodegenerative disease spinal muscular atrophy (SMA). The gene product SMN is a marker protein for one class of nuclear bodies denoted as nuclear gems. SMN has also been found in Cajal bodies, which co-localize with gems in many cell types. Interestingly, SMA patients display a reduced number of gems. Little is known about the regulation of nuclear body formation and stabilization. We have previously shown that a nuclear isoform of the fibroblast growth factor–2 (FGF-223) binds directly to SMN. In this study, we analyzed the consequences of FGF-223 binding to SMN with regard to nuclear body formation. On a molecular level, we showed that FGF-223 competed with Gemin2 (a component of the SMN complex that is necessary for gem stabilization) for binding to SMN. Down-regulation of Gemin2 by siRNA caused destabilization of SMN-positive nuclear bodies. This process is reflected in both cellular and in vivo systems by a negative regulatory function of FGF-2 in nuclear body formation: in HEK293 cells, FGF-223 decreased the number of SMN-positive nuclear bodies. The same effect could be observed in motoneurons of FGF-2 transgenic mice. This study demonstrates the functional role of a growth factor in the regulation of structural entities of the nucleus.


Behavioural Brain Research | 2011

Topology of intrastriatal dopaminergic grafts determines functional and emotional outcome in neurotoxin-lesioned rats

Julia Jungnickel; Ieva Kalve; Linda Reimers; André Nobre; Maike Wesemann; Andreas Ratzka; Nina Halfer; Christoph Lindemann; Kerstin Schwabe; Kathrin Töllner; Manuela Gernert; Claudia Grothe

Many Parkinsons disease (PD) patients suffer from anxiety disorders, which often precede the onset of classical motor symptoms. So far, there is no evidence from randomized, placebo-controlled trials for successful treatment of anxiety in patients with PD. Grafts of fetal nigral neurons are currently explored as a restorative cell therapy for PD. In PD animal models, intrastriatal transplantations of embryonic dopaminergic neurons have been shown to ameliorate behavioral defects. In our previous study we showed that expanded and differentiated neural progenitors improved drug-induced rotation behavior and posture balance as a more complex motor task. However, it is not clear whether grafting of these cells affected spontaneous locomotor activity and anxiety-like behavior in 6-OHDA lesioned rats. Therefore, we analyzed behavior of control, lesioned, sham-transplanted, and transplanted rats using open field (OF) and elevated plus maze (EPM). After unilateral 6-OHDA lesion of the medial forebrain bundle, we observed reduced locomotor activity in the EPM (wall-rearing, entries in closed arms) in lesioned and sham-transplanted rats, which correlated with the loss of dopaminergic neurons and apomorphine-induced rotation behavior. Furthermore, anxiety-like behavior in the EPM (entries and time in open arms) was increased in lesioned and sham-transplanted rats. Although exogenous cell replacement improved apomorphine-induced rotation behavior, locomotor activity and anxiety-like behavior was not reconstituted in transplanted rats. However, we provided evidence for an interaction of locomotor activity/anxiety-like behavior with graft localization in the host striatum. These results emphasize the crucial role of graft localization for benefit of restorative cell therapy for PD.


Molecular and Cellular Neuroscience | 2009

Level and localization of polysialic acid is critical for early peripheral nerve regeneration.

Julia Jungnickel; Christian Brämer; Paul Bronzlik; Esther Lipokatic-Takacs; Birgit Weinhold; Rita Gerardy-Schahn; Claudia Grothe

PolySia, the most striking post-translational modification of the neural cell adhesion molecule, is down-regulated during postnatal development. After peripheral nerve lesion, polySia is located on neuronal and glial cells normally not synthesizing polySia. However, structural consequences of reduced polySia content for peripheral nerve regeneration have not yet been clear. Furthermore, the contribution of sialyltransferases ST8SiaII and ST8SiaIV for the up-regulation of polySia has not been studied so far. In order to investigate the impact of polySia on regeneration processes of myelinated axons, we examined mouse mutants retaining only one functional sialyltransferase allele. In the absence of ST8SiaII, quantification of myelinated axons revealed a significant decrease in number and size of regenerated fibers without impairment of remyelination. In contrast, St8SiaIV deficiency resulted in increased fiber outgrowth and axonal maturation. Western blot analysis demonstrated that both ST8SiaII and St8SiaIV direct up-regulation of polySia. Cell-specific induction of polySia in myelinating Schwann cells and on regenerated axons in the presence of ST8SiaIV, but not ST8SiaII, indicates that not only the amount of polySia but also its cellular localization has a high impact on the regeneration progress of peripheral nerves.


Neuroscience | 2005

Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury : Evidence from mouse mutants

Julia Jungnickel; A. Klutzny; S. Guhr; K. Meyer; Claudia Grothe

The presence and regulation of basic fibroblast growth factor and its high-affinity tyrosine kinase receptor FGFR3 in sensory neurons during development and after peripheral nerve injury suggest a physiological role of the fibroblast growth factor-2 system for survival and maintenance of sensory neurons. Here we investigated L5 spinal ganglia of intact and lesioned fibroblast growth factor-2 knock-out and FGFR3 knock-out mice. Quantification of sensory neurons in intact L5 spinal ganglia revealed no differences between wild-types and mutant mice. After sciatic nerve axotomy, the normally occurring neuron loss in wild-type mice was significantly reduced in both knock-out strains suggesting that fibroblast growth factor-2 is involved in neuronal death mediated via FGFR3. In addition, the number of chromatolytic and eccentric cells was significantly increased in fibroblast growth factor-2 knock-out mice indicating a transient protection of injured spinal ganglia neurons in the absence of fibroblast growth factor-2. The expression of the neuropeptide calcitonin gene-related peptide in sensory neurons of intact fibroblast growth factor-2 knock-out and FGFR3 knock-out mice was not changed in comparison to adequate wild-types. Fibroblast growth factor-2 wild-type and FGFR3 wild-type mice showed a lesion-induced decrease of calcitonin gene-related peptide-positive neurons in ipsilateral L5 spinal ganglia whereas the loss of calcitonin gene-related peptide-immunoreactive sensory neurons is reduced in the absence of fibroblast growth factor-2 or FGFR3, respectively. In addition, FGFR3 wild-type and knock-out mice displayed a contralateral reduction of the neuropeptide after axotomy. These results suggest that endogenous fibroblast growth factor-2 and FGFR3 are crucially involved in the regulation of survival and calcitonin gene-related peptide expression of lumbar sensory neurons after lesion, but not during development.


Experimental Neurology | 2010

Mice lacking basic fibroblast growth factor showed faster sensory recovery.

Julia Jungnickel; Kirsten Haastert; Martin Grzybek; Nadine Thau; Esther Lipokatic-Takacs; Andreas Ratzka; Anna Nölle; Peter Claus; Claudia Grothe

Neurotrophic factors have been shown to stimulate and support peripheral nerve repair. One of these factors is basic fibroblast growth factor (FGF-2), which is up-regulated after peripheral nerve injury and influences early sciatic nerve regeneration by regulating Schwann cell proliferation. Our previous study on FGF-2 deficient mice indicated that FGF-2 is important for axonal maturation and remyelination one week after sciatic nerve crush (Jungnickel, J., Claus, P., Gransalke, K., Timmer, M. and Grothe, C., 2004. Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Mol. Cell. Neurosci. 25, 444-452). However, the functional impact of these effects on sensory and motor fibers was not clear. After performing pinch test, walking track analysis and rotarod, we found faster recovery of mechanosensory but not of motor function in mutant mice. To elucidate the role of FGF-2 on structural recovery, we analyzed FGF-2 deficient mice and wild-type littermates 2 and 4 weeks after sciatic nerve crush. Two weeks after peripheral nerve injury, regenerating fibers of mutant mice showed both significantly increased axon and myelin size, but no difference in the number of myelinated and unmyelinated fibers. Molecular analysis indicated that the expression level of myelin protein zero was significantly enhanced in lesioned nerves in the absence of FGF-2. These results suggest that loss of FGF-2 could positively influence restoration of mechanosensory function by accelerating structural recovery transiently.


Neurobiology of Disease | 2012

Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2

Nadine Thau; Julia Jungnickel; Sarah Knippenberg; Andreas Ratzka; Reinhard Dengler; Susanne Petri; Claudia Grothe

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motoneuron loss in brain and spinal cord. Mutations in the superoxide dismutase (SOD) 1 gene account for 10-20% of familial ALS patients. The ALS-mouse model over-expressing a mutant human SOD1 (G93A) gene closely mimics human ALS disease. The cause for the selective death of motoneurons is still unclear, but among several pathomechanisms discussed, loss of neurotrophic factors is one possibility. Basic fibroblast growth factor 2 (FGF-2) plays a prominent role in the motor system. In order to evaluate a role of FGF-2 in ALS pathogenesis, double mouse mutants transgenic for the human SOD1 mutation and lacking the endogenous FGF-2 gene were generated. Both heterozygous and homozygous FGF-2 deficient mutant SOD1 mice showed a significant delay in disease onset and less impaired motor performance in comparison to mutant SOD1 mice with normal FGF-2 levels. Survival of the double mouse mutants was significantly prolonged for two weeks. Motoneuron numbers were significantly higher in the double mutants and astrocytosis was diminished at disease endstage. While one would initially have expected that FGF-2 deficiency deteriorates the phenotype of mutant SOD1 animals, our results revealed a protective effect of FGF-2 reduction. In search of the underlying mechanisms, we could show up-regulation of other neurotrophic factors with proven protective effects in the ALS mouse model, ciliary neurotrophic factor (CNTF) and glial derived neurotrophic factor (GDNF) in muscle and spinal cord tissue of double mutant animals.


Cell Transplantation | 2012

The colayer method as an efficient way to genetically modify mesencephalic progenitor cells transplanted into 6-OHDA rat model of Parkinson's disease.

Andreas Ratzka; Ieva Kalve; Meltem Özer; André Nobre; Maike Wesemann; Julia Jungnickel; Christiane Köster-Patzlaff; Olga Baron; Claudia Grothe

Exogenous cell replacement represents a potent treatment option for Parkinsons disease. However, the low survival rate of transplanted dopaminergic neurons (DA) calls for methodological improvements. Here we evaluated a method to combine transient genetic modification of neuronal progenitor cells with an optimized cell culture protocol prior to intrastriatal transplantation into 6-hydroxydopamine (6-OHDA) unilateral lesioned rats. Plasmid-based delivery of brain-derived neurotrophic factor (BDNF) increases the number of DA neurons, identified by tyrosine hydroxylase immunoreactivity (TH-ir), by 25% in vitro, compared to enhanced green fluorescence protein (EGFP)-transfected controls. However, the nucleofection itself, especially the cell detachment and reseeding procedure, decreases the TH-ir neuron number to 40% compared with nontransfected control cultures. To circumvent this drawback we established the colayer method, which contains a mix of nucleofected cells reseeded on top of an adherent sister culture in a ratio 1:3. In this setup TH-ir neuron number remains high and could be further increased by 25% after BDNF transfection. Comparison of both cell culture procedures (standard and colayer) after intrastriatal transplantation revealed a similar DA neuron survival as seen in vitro. Two weeks after grafting TH-ir neuron number was strongly reduced in animals receiving the standard EGFP-transfected cells (271 ± 62) compared to 1,723 ± 199 TH-ir neurons in the colayer group. In contrast to the in vitro results, no differences in the number of grafted TH-ir neurons were observed between BDNF, EGFP, and nontransfected colayer groups, neither 2 nor 13 weeks after transplantation. Likewise, amphetamine and apomorphine-induced rotational behavior improved similarly over time in all groups. Nevertheless, the colayer protocol provides an efficient way for neurotrophic factor release by transplanted progenitor cells and will help to study the effects of candidate factors on survival and integration of transplanted DA neurons.


Glycobiology | 2012

Polysialyltransferase overexpression in Schwann cells mediates different effects during peripheral nerve regeneration

Julia Jungnickel; Matthias Eckhardt; Kirsten Haastert-Talini; Peter Claus; Paul Bronzlik; Esther Lipokatic-Takacs; Helena Maier; Volkmar Gieselmann; Claudia Grothe

The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.

Collaboration


Dive into the Julia Jungnickel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Claus

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Timmer

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

André Nobre

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Anna Nölle

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Ieva Kalve

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge