Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Júlia Kurkó is active.

Publication


Featured researches published by Júlia Kurkó.


Arthritis & Rheumatism | 2012

Suppression of Dendritic Cell Maturation and T Cell Proliferation by Synovial Fluid Myeloid Cells from Mice with Autoimmune Arthritis

Colt Egelston; Júlia Kurkó; Timea Besenyei; Beata Tryniszewska; Tibor A. Rauch; Tibor T. Glant

OBJECTIVE To determine whether myeloid cells (such as granulocytes) present in the synovial fluid (SF) of arthritic joints have an impact on adaptive immunity. Specifically, we investigated the effects of SF cells harvested from the joints of mice with proteoglycan-induced arthritis (PGIA), on dendritic cell (DC) maturation and antigen-specific T cell proliferation. METHODS We monitored DC maturation (MHCII and CD86 expression) by flow cytometry upon coculture of DCs with SF cells or spleen myeloid cells from mice with PGIA. The effects of these myeloid cells on T cell proliferation were studied using T cells purified from PG-specific T cell receptor (TCR)-transgenic (Tg) mice. Phenotype analysis of myeloid cells was performed by immunostaining, reverse transcription-polymerase chain reaction, Western blotting, and biochemical assays. RESULTS Inflammatory SF cells significantly suppressed the maturation of DCs upon coculture. PG-TCR-Tg mouse T cells cultured with antigen-loaded DCs showed dramatic decreases in proliferation in the presence of SF cells. Spleen myeloid cells from arthritic mice did not have suppressive effects. SF cells were unable to suppress CD3/CD28-stimulated proliferation of the same T cells, suggesting a DC-dependent mechanism. SF cells exhibited all of the characteristics of myeloid-derived suppressor cells (MDSCs) and exerted suppression primarily through the production of nitric oxide and reactive oxygen species by granulocyte-like cells. CONCLUSION SF in the joints of mice with PGIA contains a population of granulocytic MDSCs that potently suppress DC maturation and T cell proliferation. These MDSCs have the potential to limit the expansion of autoreactive T cells, thus breaking the vicious cycle of autoimmunity and inflammation.


BMC Musculoskeletal Disorders | 2014

Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: A pilot study

Júlia Kurkó; András Vida; Tibor T. Glant; Carla R. Scanzello; Robert S. Katz; Anjali Nair; Zoltán Szekanecz

BackgroundMyeloid-derived suppressor cells (MDSCs) are a heterogeneous population of innate immune cells with a granulocyte-like or monocyte-like phenotype and a unique ability to suppress T-cell responses. MDSCs have been shown to accumulate in cancer patients, but recent studies suggest that these cells are also present in humans and animals suffering from autoimmune diseases. We previously identified MDSCs in the synovial fluid (SF) of mice with experimental autoimmune arthritis. The goal of the present study was to identify MDSCs in the SF of patients with rheumatoid arthritis (RA).MethodsRA SF cells were studied by flow cytometry using antibodies to MDSC cell surface markers as well as by analysis of cell morphology. The suppressor activity of RA SF cells toward autologous peripheral blood T cells was determined ex vivo. We employed both antigen-nonspecific (anti-CD3/CD28 antibodies) and antigen-specific (allogeneic cells) induction systems to test the effects of RA SF cells on the proliferation of autologous T cells.ResultsSF from RA patients contained MDSC-like cells, the majority of which showed granulocyte (neutrophil)-like phenotype and morphology. RA SF cells significantly suppressed the proliferation of anti-CD3/CD28-stimulated autologous T cells upon co-culture. When compared side by side, RA SF cells had a more profound inhibitory effect on the alloantigen-induced than the anti-CD3/CD28-induced proliferation of autologous T cells.ConclusionMDSCs are present among RA SF cells that are commonly regarded as inflammatory neutrophils. Our results suggest that the presence of neutrophil-like MDSCs in the SF is likely beneficial, as these cells have the ability to limit the expansion of joint-infiltrating T cells in RA.


Immunologic Research | 2013

Pharmacogenetics and pharmacogenomics in rheumatology

Zoltán Szekanecz; Bertalan Mesko; Szilard Poliska; Andrea Váncsa; Szilvia Szamosi; Edit Végh; Enikö Simkovics; Judit Laki; Júlia Kurkó; Timea Besenyei; Tibor T. Glant; Laszlo Nagy

Pharmacogenetics and pharmacogenomics deal with possible associations of a single genetic polymorphism or those of multiple gene profiles with responses to drugs. In rheumatology, genes and gene signatures may be associated with altered efficacy and/or safety of anti-inflammatory drugs, disease-modifying antirheumatic drugs (DMARDs) and biologics. In brief, genes of cytochrome P450, other enzymes involved in drug metabolism, transporters and some cytokines have been associated with responses to and toxicity of non-steroidal anti-inflammatory drugs, corticosteroids and DMARDs. The efficacy of biologics may be related to alterations in cytokine, chemokine and FcγR genes. Numerous studies reported multiple genetic signatures in association with responses to biologics; however, data are inconclusive. More, focused studies carried out in larger patient cohorts, using pre-selected genes, may be needed in order to determine the future of pharmacogenetics and pharmacogenomics as tools for personalized medicine in rheumatology.


Arthritis & Rheumatism | 2013

Differentially Expressed Epigenome Modifiers, Including Aurora Kinases A and B, in Immune Cells in Rheumatoid Arthritis in Humans and Mouse Models

Tibor T. Glant; Timea Besenyei; András Kádár; Júlia Kurkó; Beata Tryniszewska; János Gál; Györgyike Soós; Zoltán Szekanecz; Gyula Hoffmann; Joel A. Block; Robert S. Katz; Tibor A. Rauch

OBJECTIVE To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors. METHODS Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative reverse transcription-PCR, Western blot, and flow cytometry methods. The targeted inhibition of the up-regulated enzymes was studied in arthritic mice. RESULTS A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinases A and B, both of which were highly expressed in arthritic mice and treatment-naive RA patients, were selected for detailed analysis. Elevated aurora kinase expression was accompanied by increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against disease onset, and attenuated inflammatory reactions in arthritic mice. CONCLUSION Arthritis development is accompanied by changes in expression of a number of epigenome-modifying enzymes. Drug-induced down-regulation of the aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target aurora kinases can potentially improve RA management.


PLOS ONE | 2014

Suppression of Proteoglycan-Induced Autoimmune Arthritis by Myeloid-Derived Suppressor Cells Generated In Vitro from Murine Bone Marrow

Júlia Kurkó; András Vida; Tímea Ocskó; Beata Tryniszewska; Tibor A. Rauch; Tibor T. Glant; Zoltán Szekanecz

Background Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA. Methods Murine bone marrow (BM) cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined. Results BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels. Conclusions Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the therapeutic efficacy of BM transplantation in RA.


Clinical & Developmental Immunology | 2012

Non-MHC Risk Alleles in Rheumatoid Arthritis and in the Syntenic Chromosome Regions of Corresponding Animal Models

Timea Besenyei; András Kádár; Beata Tryniszewska; Júlia Kurkó; Tibor A. Rauch; Tibor T. Glant; Zoltán Szekanecz

Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles.


Vaccine | 2017

An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis

Tibor T. Glant; Adrienn Markovics; Ken S. Rosenthal; Júlia Kurkó; Roy E. Carambula; Steve Cress; Harold Steiner; Daniel H. Zimmerman

Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA.


Arthritis & Rheumatism | 2013

Differentially Expressed Epigenome Modifiers, Including Aurora Kinases A and B, in Immune Cells in Rheumatoid Arthritis in Humans and Mouse Models: Epigenome Modifiers in Rheumatoid Arthritis

Tibor T. Glant; Timea Besenyei; András Kádár; Júlia Kurkó; Beata Tryniszewska; János Gál; Györgyi Soós; Zoltán Szekanecz; Gyula Hoffmann; Joel A. Block; Robert S. Katz; Tibor A. Rauch

OBJECTIVE To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors. METHODS Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative reverse transcription-PCR, Western blot, and flow cytometry methods. The targeted inhibition of the up-regulated enzymes was studied in arthritic mice. RESULTS A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinases A and B, both of which were highly expressed in arthritic mice and treatment-naive RA patients, were selected for detailed analysis. Elevated aurora kinase expression was accompanied by increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against disease onset, and attenuated inflammatory reactions in arthritic mice. CONCLUSION Arthritis development is accompanied by changes in expression of a number of epigenome-modifying enzymes. Drug-induced down-regulation of the aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target aurora kinases can potentially improve RA management.


Arthritis & Rheumatism | 2013

Differentially expressed epigenome modifiers, including Aurora kinaseA and B, in immune cells of rheumatoid arthritis

Tibor T. Glant; Timea Besenyei; András Kádár; Júlia Kurkó; Beata Tryniszewska; János Gál; Györgyi Soós; Zoltán Szekanecz; Gyula Hoffmann; Joel A. Block; Robert S. Katz; Tibor A. Rauch

OBJECTIVE To identify epigenetic factors that are implicated in the pathogenesis of rheumatoid arthritis (RA), and to explore the therapeutic potential of the targeted inhibition of these factors. METHODS Polymerase chain reaction (PCR) arrays were used to investigate the expression profile of genes that encode key epigenetic regulator enzymes. Mononuclear cells from RA patients and mice were monitored for gene expression changes, in association with arthritis development in murine models of RA. Selected genes were further characterized by quantitative reverse transcription-PCR, Western blot, and flow cytometry methods. The targeted inhibition of the up-regulated enzymes was studied in arthritic mice. RESULTS A set of genes with arthritis-specific expression was identified by the PCR arrays. Aurora kinases A and B, both of which were highly expressed in arthritic mice and treatment-naive RA patients, were selected for detailed analysis. Elevated aurora kinase expression was accompanied by increased phosphorylation of histone H3, which promotes proliferation of T lymphocytes. Treatment with VX-680, a pan-aurora kinase inhibitor, promoted B cell apoptosis, provided significant protection against disease onset, and attenuated inflammatory reactions in arthritic mice. CONCLUSION Arthritis development is accompanied by changes in expression of a number of epigenome-modifying enzymes. Drug-induced down-regulation of the aurora kinases, among other targets, seems to be sufficient to treat experimental arthritis. Development of new therapeutics that target aurora kinases can potentially improve RA management.


Clinical Reviews in Allergy & Immunology | 2013

Genetics of Rheumatoid Arthritis — A Comprehensive Review

Júlia Kurkó; Timea Besenyei; Judit Laki; Tibor T. Glant; Zoltán Szekanecz

Collaboration


Dive into the Júlia Kurkó's collaboration.

Top Co-Authors

Avatar

Tibor T. Glant

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beata Tryniszewska

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tibor A. Rauch

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

András Kádár

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert S. Katz

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joel A. Block

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge