Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia L. MacIsaac is active.

Publication


Featured researches published by Julia L. MacIsaac.


Genome Research | 2014

The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes

Ai Ling Teh; Hong Pan; Li Chen; Mei-Lyn Ong; Shaillay Dogra; Johnny Wong; Julia L. MacIsaac; Sarah M. Mah; Lisa M. McEwen; Seang-Mei Saw; Keith M. Godfrey; Yap Seng Chong; Kenneth Kwek; Chee Keong Kwoh; Shu-E Soh; Mary Foong-Fong Chong; Sheila J. Barton; Neerja Karnani; Clara Yujing Cheong; Jan Paul Buschdorf; Walter Stünkel; Michael S. Kobor; Michael J. Meaney; Peter D. Gluckman; Joanna D. Holbrook

Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the complex interactions of inherited and environmental components that define the developmental origins of a range of disorders. The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly, neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci (methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were readily detected in neonatal methylomes, and genotype alone best explained ∼25% of the VMRs. We found that the best explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic variation.


Genome Research | 2015

Bacterial infection remodels the DNA methylation landscape of human dendritic cells

Alain Pacis; Ludovic Tailleux; Alexander M. Morin; John J. Lambourne; Julia L. MacIsaac; Vania Yotova; Anne Dumaine; Anne Danckaert; Francesca Luca; Jean Christophe Grenier; Kasper D. Hansen; Brigitte Gicquel; Miao Yu; Athma A. Pai; Chuan He; Jenny Tung; Tomi Pastinen; Michael S. Kobor; Roger Pique-Regi; Yoav Gilad; Luis B. Barreiro

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.


PLOS Pathogens | 2014

Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages.

Alexandra K. Marr; Julia L. MacIsaac; Ruiwei Jiang; Adriana M. Airo; Michael S. Kobor; W. Robert McMaster

Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells.


Epigenomics | 2015

HIF3A association with adiposity: the story begins before birth

Hong Pan; Xinyi Lin; Yonghui Wu; Li Chen; Ai Ling Teh; Shu-E Soh; Yung Seng Lee; Mya Thway Tint; Julia L. MacIsaac; Alexander M. Morin; Kok Hian Tan; Fabian Yap; Seang-Mei Saw; Michael S. Kobor; Michael J. Meaney; Keith M. Godfrey; Yap Seng Chong; Peter D. Gluckman; Neerja Karnani; Joanna D. Holbrook

Aim: Determine if the association of HIF3A DNA methylation with weight and adiposity is detectable early in life. Material & methods: We determined HIF3A genotype and DNA methylation patterns (on hybridization arrays) in DNA extracted from umbilical cords of 991 infants. Methylation levels at three CpGs in the HIF3A first intron were related to neonatal and infant anthropometry and to genotype at nearby polymorphic sites. Results & conclusion: Higher methylation levels at three previously described HIF3A CpGs were associated with greater infant weight and adiposity. The effect sizes were slightly smaller than those reported for adult BMI. There was also an interaction within cis-genotype. The association between higher DNA methylation at HIF3A and increased adiposity is present in neonates. In this study, no particular prenatal factor strongly influenced HIF3A hypermethylation. Our data nonetheless suggest shared prenatal influences on HIF3A methylation and adiposity.


Development and Psychopathology | 2015

Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes

Li Chen; Hong Pan; Ta Anh Tuan; Ai Ling Teh; Julia L. MacIsaac; Sarah M. Mah; Lisa M. McEwen; Yue Li; Helen Chen; Birit F. P. Broekman; Jan Paul Buschdorf; Yap Seng Chong; Kenneth Kwek; Seang-Mei Saw; Peter D. Gluckman; Marielle V. Fortier; Anne Rifkin-Graboi; Michael S. Kobor; Anqi Qiu; Michael J. Meaney; Joanna D. Holbrook

Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.


The Journal of Allergy and Clinical Immunology | 2017

Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation

Rachel L. Clifford; Meaghan J. Jones; Julia L. MacIsaac; Lisa M. McEwen; Sarah J. Goodman; Michael S. Kobor; Chris Carlsten

Background: Allergic disease affects 30% to 40% of the worlds population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene‐environment interactions. Objective: We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. Methods: We performed a randomized crossover‐controlled exposure study to allergen and diesel exhaust in humans, and measured single‐site (CpG) resolution global DNA methylation in bronchial epithelial cells. Results: Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. Conclusions: These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult.


Nature Communications | 2015

The epigenomic landscape of African rainforest hunter-gatherers and farmers

Maud Fagny; Etienne Patin; Julia L. MacIsaac; Maxime Rotival; Timothée Flutre; Meaghan J. Jones; Katherine J. Siddle; Hélène Quach; Christine Harmant; Lisa M. McEwen; Alain Froment; Evelyne Heyer; Antoine Gessain; Edouard Betsem; Patrick Mouguiama-Daouda; Jean-Marie Hombert; George H. Perry; Luis B. Barreiro; Michael S. Kobor; Lluis Quintana-Murci

The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation—particularly that correlated with historical lifestyle—shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time.


Development and Psychopathology | 2016

Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity

Elisa A. Esposito; Meaghan J. Jones; Jenalee R. Doom; Julia L. MacIsaac; Megan R. Gunnar; Michael S. Kobor

Internationally adopted adolescents who are adopted as young children from conditions of poverty and deprivation have poorer physical and mental health outcomes than do adolescents conceived, born, and raised in the United States by families similar to those who adopt internationally. Using a sample of Russian and Eastern European adoptees to control for Caucasian race and US birth, and nonadopted offspring of well-educated and well-resourced parents to control for postadoption conditions, we hypothesized that the important differences in environments, conception to adoption, might be reflected in epigenetic patterns between groups, specifically in DNA methylation. Thus, we conducted an epigenome-wide association study to compare DNA methylation profiles at approximately 416,000 individual CpG loci from peripheral blood mononuclear cells of 50 adopted youth and 33 nonadopted youth. Adopted youth averaged 22 months at adoption, and both groups averaged 15 years at testing; thus, roughly 80% of their lives were lived in similar circumstances. Although concurrent physical health did not differ, cell-type composition predicted using the DNA methylation data revealed a striking difference in the white blood cell-type composition of the adopted and nonadopted youth. After correcting for cell type and removing invariant probes, 30 CpG sites in 19 genes were more methylated in the adopted group. We also used an exploratory functional analysis that revealed that 223 gene ontology terms, clustered in neural and developmental categories, were significantly enriched between groups.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood

Thomas W. McDade; Calen P. Ryan; Meaghan J. Jones; Julia L. MacIsaac; Alexander M. Morin; Jess M. Meyer; Judith B. Borja; Gregory E. Miller; Michael S. Kobor; Christopher W. Kuzawa

Significance Environments in infancy and childhood influence levels of inflammation in adulthood—an important risk factor for multiple diseases of aging—but the underlying biological mechanisms remain uncertain. Using data from a unique cohort study in the Philippines with a lifetime of information on each participant, we provide evidence that nutritional, microbial, and psychosocial exposures in infancy and childhood predict adult levels of DNA methylation—biochemical marks on the genome that affect gene expression—in genes that regulate inflammation. We also show that DNA methylation in these genes relates to levels of inflammatory biomarkers implicated in cardiovascular and other diseases. These results suggest that epigenetic mechanisms may partially explain how early environments have enduring effects on inflammation and inflammation-related diseases. Chronic inflammation contributes to a wide range of human diseases, and environments in infancy and childhood are important determinants of inflammatory phenotypes. The underlying biological mechanisms connecting early environments with the regulation of inflammation in adulthood are not known, but epigenetic processes are plausible candidates. We tested the hypothesis that patterns of DNA methylation (DNAm) in inflammatory genes in young adulthood would be predicted by early life nutritional, microbial, and psychosocial exposures previously associated with levels of inflammation. Data come from a population-based longitudinal birth cohort study in metropolitan Cebu, the Philippines, and DNAm was characterized in whole blood samples from 494 participants (age 20–22 y). Analyses focused on probes in 114 target genes involved in the regulation of inflammation, and we identified 10 sites across nine genes where the level of DNAm was significantly predicted by the following variables: household socioeconomic status in childhood, extended absence of a parent in childhood, exposure to animal feces in infancy, birth in the dry season, or duration of exclusive breastfeeding. To evaluate the biological significance of these sites, we tested for associations with a panel of inflammatory biomarkers measured in plasma obtained at the same age as DNAm assessment. Three sites predicted elevated inflammation, and one site predicted lower inflammation, consistent with the interpretation that levels of DNAm at these sites are functionally relevant. This pattern of results points toward DNAm as a potentially important biological mechanism through which developmental environments shape inflammatory phenotypes across the life course.


Nucleic Acids Research | 2012

Tissue-specific alternative polyadenylation at the imprinted gene Mest regulates allelic usage at Copg2

Julia L. MacIsaac; Aaron B. Bogutz; A. Sorana Morrissy; Louis Lefebvre

The gene Mest (also known as Peg1) is regulated by genomic imprinting in the mouse and only the paternal allele is active for transcription. MEST is similarly imprinted in humans, where it is a candidate for the growth retardation Silver-Russell syndrome. The MEST protein belongs to an ancient family of hydrolases but its function is still unknown. It is highly conserved in vertebrates although imprinted expression is only observed in marsupials and eutherians, thus a recent evolutionary event. Here we describe the identification of new imprinted RNA products at the Mest locus, longer variants of the RNA, called MestXL, transcribed >10 kb into the downstream antisense gene Copg2. During development MestXL is produced exclusively in the developing central nervous system (CNS) by alternative polyadenylation. Copg2 is biallelically expressed in the embryo except in MestXL-expressing tissues, where we observed preferential expression from the maternal allele. To analyze the function of the MestXL transcripts in Copg2 regulation, we studied the effects of a targeted allele at Mest introducing a truncation in the mRNA. We show that both the formation of the MestXL isoforms and the allelic bias at Copg2 are lost in the CNS of mutants embryos. Our results propose a new mechanism to regulate allelic usage in the mammalian genome, via tissue-specific alternative polyadenylation and transcriptional interference in sense–antisense pairs at imprinted loci.

Collaboration


Dive into the Julia L. MacIsaac's collaboration.

Top Co-Authors

Avatar

Michael S. Kobor

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lisa M. McEwen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alexander M. Morin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meaghan J. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Mah

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge