Julia L. Riley
Macquarie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia L. Riley.
PLOS ONE | 2015
James H. Baxter-Gilbert; Julia L. Riley; David Lesbarrères; Jacqueline D. Litzgus
Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road mitigation to ensure allow for adaptive management and optimization of these increasingly important conservation tools.
Conservation Physiology | 2014
James H. Baxter-Gilbert; Julia L. Riley; Gabriela F. Mastromonaco; Jacqueline D. Litzgus; David Lesbarrères
Reptiles are globally endangered, and roadways are a major threat to many species. We extracted corticosterone from turtle claws to examine whether proximity to roads increased stress levels. Our novel sampling method was successful; however we found no difference in corticosterone levels between road-adjacent and natural sites.
Wildlife Research | 2013
Julia L. Riley; Jacqueline D. Litzgus
Abstract Context. A main goal of conservation is to mitigate anthropogenic impacts on natural ecosystems, thus conservation tools themselves should not negatively affect target species. Predator-exclusion cages are effectively used to reduce predation of turtle nests; however, their effects on nest environment and developing hatchlings have not been examined. Aims. Our study had the following four goals: (1) to examine effects of cages on the nest environment, (2) determine whether nest caging affects proxies for hatchling fitness, (3) evaluate whether nest predators preferentially interact with certain cage types, and (4) assess the cost-effectiveness of different nest caging designs. Methods. In 2010 and 2011 in Algonquin Provincial Park, Ontario, painted turtle (Chrysemys picta; n = 93) and snapping turtle (Chelydra serpentina; n = 91) nests were assigned to one of three treatments (wooden-sided cages, above- and below-ground wire cages) or a control (no nest cage) and outfitted with a data logger to record incubation temperature. After emergence, hatching success and proxies of hatchling fitness were measured. Key results. Nest temperature, hatching success, frequency of hatchling deformities and locomotor performance did not differ among cage treatments. However, hatchling body condition differed among treatments; wooden-sided and below-ground cages had the most positive influence on body condition in painted and snapping turtles, respectively. Predator interactions did not differ among treatments, and wooden-sided cages were the most inexpensive to construct. Conclusions. Nest cages did not alter the nest environment from natural conditions but did alter hatchling body condition, and nest caging affected species differently. Implications. Nest cages are known to reduce nest depredation, and our data indicated that, in general, nest cages also do not affect the nest environment or proxies for hatchling fitness. Thus, our findings indicated that cages are effective conservation tools that do not present secondary deleterious effects on potential recruitment.
The Journal of Experimental Biology | 2014
Julia L. Riley; Glenn J. Tattersall; Jacqueline D. Litzgus
Many temperate animals spend half their lives in a non-active, overwintering state, and multiple adaptations have evolved to enable winter survival. One notable vertebrate model is Chrysemys picta, whose hatchlings display dichotomous overwintering strategies: some hatchlings spend their first winter aquatically after nest emergence in the autumn, whereas others overwinter terrestrially within their natal nest with subsequent emergence in the spring. The occurrence of these strategies varies among populations and temporally within populations; however, factors that determine the strategy employed by a nest in nature are unknown. We examined potential factors that influence intra-population variation in the overwintering strategy of C. picta hatchlings over two winters in Algonquin Park, Ontario. We found that environmental factors may be a trigger for the hatchling overwintering strategy: autumn-emerging nests were sloped towards the water and were surrounded by a relatively higher percentage of bare ground compared with spring-emerging nests. Autumn-emerging hatchlings were also relatively smaller. Overwintering strategy was not associated with clutch oviposition sequence, or mammalian or avian predation attempts. Instead, autumn emergence from the nest was associated with the direct mortality threat of predation by sarcophagid fly larvae. Body condition and righting response, measured as proxies of hatchling fitness, did not differ between overwintering strategies. Costs and benefits of overwintering aquatically versus terrestrially in hatchling C. picta are largely unknown, and have the potential to affect population dynamics. Understanding winter survival has great implications for turtle ecology, thus we emphasize areas for future research on dichotomous overwintering strategies in temperate hatchling turtles.
Royal Society Open Science | 2017
Julia L. Riley; Daniel W. A. Noble; Richard W. Byrne; Martin J. Whiting
Early social environment can play a significant role in shaping behavioural development. For instance, in many social mammals and birds, isolation rearing results in individuals that are less exploratory, shyer, less social and more aggressive than individuals raised in groups. Moreover, dynamic aspects of social environments, such as the nature of relationships between individuals, can also impact the trajectory of development. We tested if being raised alone or socially affects behavioural development in the family-living tree skink, Egernia striolata. Juveniles were raised in two treatments: alone or in a pair. We assayed exploration, boldness, sociability and aggression repeatedly throughout each juveniles first year of life, and also assessed social interactions between pairs to determine if juveniles formed dominant–subordinate relationships. We found that male and/or the larger skinks within social pairs were dominant. Developing within this social environment reduced skink growth, and subordinate skinks were more prone to tail loss. Thus, living with a conspecific was costly for E. striolata. The predicted negative effects of isolation failed to materialize. Nevertheless, there were significant differences in behavioural traits depending on the social environment (isolated, dominant or subordinate member of a pair). Isolated skinks were more social than subordinate skinks. Subordinate skinks also became more aggressive over time, whereas isolated and dominant skinks showed invariable aggression. Dominant skinks became bolder over time, whereas isolated and subordinate skinks were relatively stable in their boldness. In summary, our study is evidence that isolation rearing does not consistently affect behaviour across all social taxa. Our study also demonstrates that the social environment plays an important role in behavioural development of a family-living lizard.
Conservation Biology | 2017
Christina M. Davy; Gabriela F. Mastromonaco; Julia L. Riley; James H. Baxter-Gilbert; Heather W. Mayberry; Craig K. R. Willis
Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free-ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry-over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations.
Behavioral Ecology and Sociobiology | 2018
Julia L. Riley; Anna Küchler; Théo Damasio; Daniel W. A. Noble; Richard W. Byrne; Martin J. Whiting
The social environment during development can affect learning; for example, raising an obligate social mammal in isolation can hinder their learning ability. However, we know little about how the social environment impacts learning in less-studied, facultatively social taxa, like family-living lizards. We reared tree skinks (Egernia striolata) in two treatments, either with a conspecific or in isolation. We used three tasks to quantify skink learning ability (motor, discrimination, and reversal). Skinks performed these tasks under two learning treatments: either after demonstration (social learning) or without social information (individual learning). We did not find any evidence that tree skinks used social information. The majority of skinks learnt our motor (91%) and discrimination tasks (100%), and a third learnt our reversal task (34%). Contrary to our predictions, and the majority of previous literature, we detected no negative effect of rearing treatment on learning in any task. Our surprising findings are likely due to this skink’s variable social system, and we suggest that birds and mammals with facultative sociality may not be affected by isolation rearing in the same way as taxa with obligate sociality.Significance statementSurvival can be impacted by an animal’s ability to learn, but many factors can influence this ability (i.e., age, sex, stress, and developmental environment). In this study, we examined how social environment across ontogeny impacts the learning ability of a facultatively family-living animal, the tree skink. Traditionally, the relationship between social environment and learning has been examined in obligate social species. But, examining this relationship in species across all social systems aids in our understanding of the evolution of sociality, and the consequences and limitations of each social system. We found the social environment tree skinks were raised in did not affect their social or individual learning abilities across three foraging tasks. Our findings provide an initial examination of how social environment impacts learning in a facultatively social species.
Scientific Data | 2018
Daniel W. A. Noble; Vaughn Stenhouse; Julia L. Riley; Daniel A. Warner; Geoffrey M. While; Wei-Guo Du; Tobias Uller; Lisa E. Schwanz
How temperature influences development has direct relevance to ascertaining the impact of climate change on natural populations. Reptiles have served as empirical models for understanding how the environment experienced by embryos can influence phenotypic variation, including sex ratio, phenology and survival. Such an understanding has important implications for basic eco-evolutionary theory and conservation efforts worldwide. While there is a burgeoning empirical literature of experimental manipulations of embryonic thermal environments, addressing widespread patterns at a comparative level has been hampered by the lack of accessible data in a format that is amendable to updates as new studies emerge. Here, we describe a database with nearly 10, 000 phenotypic estimates from 155 species of reptile, collected from 300 studies manipulating incubation temperature (published between 1974–2016). The data encompass various morphological, physiological, behavioural and performance traits along with growth rates, developmental timing, sex ratio and survival (e.g., hatching success). This resource will serve as an important data repository for addressing overarching questions about thermal plasticity of reptile embryos.
Journal of Herpetology | 2016
Julia L. Riley; James H. Baxter-Gilbert; Christopher G. Guglielmo; Jacqueline D. Litzgus
Abstract Body composition is a measure of an animals energetic state that can inform many research fields, yet the analysis traditionally requires individuals to be killed, and chemical analysis is labor intensive. Quantitative magnetic resonance (QMR) measures body composition noninvasively in live and nonanesthetized animals. Our aim was to validate QMR analysis for snakes by comparing it with gravimetric chemical analysis. We collected Northern Watersnakes (Nerodia sipedon sipedon) and Eastern Massasaugas (Sistrurus catenatus catenatus) that were found dead on roads, analyzed their body composition using the QMR scanner, and then by gravimetric chemical analysis. We compared fat mass, wet lean mass, and total water mass between the two methods, and then calculated bias, absolute error (g), and relative error (%) of the QMR analysis. Body composition values from the QMR analyses were highly correlated with the values obtained by gravimetric chemical analysis. Bias and errors were reasonable for wet lean and total water mass values, but the raw QMR data overestimated fat mass. When we calibrated the QMR using the chemical extraction data, it nearly eliminated bias and greatly reduced absolute and relative error. Therefore, following calibration, QMR analysis is an effective method to measure body composition of snakes. QMR very accurately measures wet lean and total water masses and can be used to detect changes in fat mass particularly in longitudinal studies of individuals across seasons.
Frontiers in Ecology and Evolution | 2018
Martin J. Whiting; Feng Xu; Fonti Kar; Julia L. Riley; Richard W. Byrne; Daniel W. A. Noble
Social learning is widespread among family living species, particularly mammals and birds with relatively high levels of social complexity and overt social interaction. However, the occurrence of social learning has never been documented in lizards with kin-based sociality, which have less obvious social interactions. We tested for social learning in Australian tree skinks (Egernia striolata), a species that commonly lives in family groups in the wild, using a two-step foraging task. Lizards were randomly allocated to either a social learning treatment or a control group and presented first with an instrumental task requiring the displacement of a lid, followed by an association task, consisting of two dishes with different colored lids. Prior to each task, lizards in the social learning treatment observed a trained demonstrator extract a food reward while the control also viewed a conspecific, but in the absence of the foraging task. The social learning treatment and control group solved the instrumental task at similar rates, but in the association task lizards in the social learning treatment made fewer errors and reached our learning criterion sooner. To the best of our knowledge, we present the first evidence for social learning in a lizard with kin-based sociality.