Julia M. Inamine
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia M. Inamine.
Journal of Biological Chemistry | 1999
Merrill L. Schaeffer; Kay-Hooi Khoo; Gurdyal S. Besra; Delphi Chatterjee; Patrick J. Brennan; John T. Belisle; Julia M. Inamine
The biosynthesis of lipoarabinomannan (LAM), a key mycobacterial lipoglycan that has been implicated in numerous immunoregulatory functions, was examined utilizingd-mannosamine (ManN) as a tool to identify mannosyltransferase genes involved in LAM synthesis. Cell-free reactions utilizing cellular membranes of mycobacteria as the enzyme source indicated that ManN inhibited the synthesis of phosphatidylinositol mannosides, early precursors to LAM. A selection strategy was devised to screen a Mycobacterium tuberculosisgenomic library in Mycobacterium smegmatis for clones conferring conditional resistance to ManN, with the rationale that overexpression of the gene(s) encoding a target of ManN would impart a ManN-resistant phenotype under these conditions. This strategy led to the identification of pimB, whose deduced amino acid sequence shows similarity to mannosyltransferases and other glycosyltransferases. Partially purified recombinant PimB protein from Escherichia coli or membranes from M. smegmatis overexpressing the pimB gene were used in cell-free assays to show that PimB catalyzes the formation of triacylphosphatidylinositol dimannoside from GDP-mannose and triacylphosphatidylinositol monomannoside.
Journal of Biological Chemistry | 1996
Kay-Hooi Khoo; Edward Douglas; Parastoo Azadi; Julia M. Inamine; Gurdyal S. Besra; Katarína Mikušová; Patrick J. Brennan; Delphi Chatterjee
The anti-tuberculosis drug, ethambutol (Emb), was previously shown to inhibit the synthesis of arabinans of both the cell wall arabinogalactan (AG) and lipoarabinomannan (LAM) of Mycobacterium tuberculosis and other mycobacteria. However, an Emb-resistant mutant, isolated by consecutive passage of the Mycobacterium smegmatis parent strain in media containing increasing concentrations of Emb, while synthesizing a normal version of AG, produced truncated forms of LAM when maintained on 10 μg/ml Emb (Mikušová, K., Slayden, R. A., Besra, G. S., and Brennan, P. J. (1995) Antimicrob. Agents Chemother. 39, 2482-2489). We have now isolated and characterized the truncated LAMs made by both the resistant mutant and a recombinant strain transfected with a plasmid containing the emb region from Mycobacterium avium which encodes for Emb resistance. By chemical analysis, endoarabinanase digestion, high pH anion exchange chromatography, and mass spectrometry analyses, truncation was demonstrated as primarily a consequence of selective and partial inhibition of the synthesis of the linear arabinan terminal motif, which constitutes a substantial portion of the arabinan termini in LAM but not of AG. However, at higher concentrations, Emb also affected the general biosynthesis of arabinan destined for both AG and LAM, resulting in severely truncated LAM as well as AG with a reduced Ara:Gal ratio. The results suggested that Emb exerts its antimycobacterial effect by inhibiting an array of arabinosyltransferases involved in the biosynthesis of arabinans unique to the mycobacterial cell wall. It was further concluded that the uniquely branched terminal Ara6 motif common to both AG and LAM is an essential structural entity for a functional cell wall and, consequently, that the biosynthetic machinery responsible for its synthesis is the effective target of Emb in its role as a potent anti-tuberculosis drug.
Journal of Bacteriology | 2000
Torsten M. Eckstein; Julia M. Inamine; Markus L. Lambert; John T. Belisle
A major phenotypic trait of the Mycobacterium avium complex is the ability to produce rough and smooth colony variants. The chemical basis of this morphological variation is the loss of an antigenic surface structure, termed glycopeptidolipid (GPL), by rough variants. Using M. avium serovar 2 strain 2151 as a model system, this laboratory previously reported that rough variants arise via the deletion of large genomic regions encoding GPL biosynthesis. One such deletion encompasses the gene cluster (ser2) responsible for production of the serovar 2 GPL haptenic oligosaccharide. In this study, nucleotide sequencing revealed that both ends of the ser2 gene cluster are flanked by a novel insertion sequence (IS1601) oriented as direct repeats. Detailed analyses of the site of deletion in the genome of M. avium 2151 Rg-1 demonstrated that a single copy of IS1601 remained and that the ser2 gene cluster was deleted by homologous recombination. This same deletion pattern was observed for 10 out of 15 rough colony variants tested. Additionally, these studies revealed that IS1601 contains portions of three independent insertion sequences. This report is the first to define the precise genetic basis of colony variation in Mycobacterium spp. and provides further evidence that homologous recombination between insertion sequence elements can be a primary determinant of genome plasticity in these bacteria.
Microbial Pathogenesis | 2009
Chia-wei Wu; Shelly K. Schmoller; John P. Bannantine; Torsten M. Eckstein; Julia M. Inamine; Michael Livesey; Ralph M. Albrecht; Adel M. Talaat
Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johnes disease in cattle and a potential risk factor for Crohns disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the DeltapstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the DeltapstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings.
Journal of Biological Chemistry | 2006
Torsten M. Eckstein; Sukantha Chandrasekaran; Sebabrata Mahapatra; Michael R. McNeil; Delphi Chatterjee; Christopher D. Rithner; Philip W. Ryan; John T. Belisle; Julia M. Inamine
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne disease in cattle and other ruminants, is proposed to be at least one of the causes of Crohn disease in humans. MAP and Mycobacterium avium subspecies avium, a closely related opportunistic environmental bacterium, share 95% of their genes and exhibit homologies of more than 99% between these genes. The identification of molecules specific for MAP is essential for understanding its pathogenicity and for development of useful diagnostic tools. The application of gas chromatography, mass spectrometry, and nuclear magnetic resonance led to the structural identification of a major cell wall lipopeptide of MAP, termed Para-LP-01, defined as C20 fatty acyl-d-Phe-N-Me-l-Val-l-Ile-l-Phe-l-Ala methyl ester. Variations of this lipopeptide with different fatty acyl moieties (C16 fatty acyl through C17, C18, C19, C21 to C22) were also identified. Besides the specificity of this lipopeptide for MAP, the presence of an N-Me-l-valine represents the first reported N-methylated amino acid within an immunogenic lipopeptide of mycobacteria. Sera from animals with Johne disease, but not sera from uninfected cattle, reacted with this lipopeptide, indicating potential biological importance.
Annals of Clinical Microbiology and Antimicrobials | 2004
Vida R. Irani; Sun-Hwa Lee; Torsten M. Eckstein; Julia M. Inamine; John T. Belisle; Joel N. Maslow
BackgroundMycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium.MethodsTo be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain.ResultsIn this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium.ConclusionWe report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug resistance can be studied in a consistent manner.
Proceedings of the National Academy of Sciences of the United States of America | 1996
A E Belanger; Gurdal S Besra; M E Ford; Katarína Mikušová; John T. Belisle; Patrick J. Brennan; Julia M. Inamine
Journal of Bacteriology | 1991
John T. Belisle; Lisa Pascopella; Julia M. Inamine; Patrick J. Brennan; W R Jacobs
Journal of Biological Chemistry | 1993
John T. Belisle; K Klaczkiewicz; Patrick J. Brennan; W R Jacobs; Julia M. Inamine
Journal of Biological Chemistry | 1993
John T. Belisle; Michael R. McNeil; Delphi Chatterjee; Julia M. Inamine; Patrick J. Brennan