Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Pongratz is active.

Publication


Featured researches published by Julia Pongratz.


Journal of Climate | 2013

Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21st century

Victor Brovkin; Lena R. Boysen; Vivek K. Arora; J. P. Boisier; P. Cadule; L P Chini; Martin Claussen; Pierre Friedlingstein; B. J. J. M. van den Hurk; George C. Hurtt; Colin Jones; Etsushi Kato; N. de Noblet-Ducoudré; F. Pacifico; Julia Pongratz; M. Weiss

AbstractThe effects of land-use changes on climate are assessed using specified-concentration simulations complementary to the representative concentration pathway 2.6 (RCP2.6) and RCP8.5 scenarios performed for phase 5 of the Coupled Model Intercomparison Project (CMIP5). This analysis focuses on differences in climate and land–atmosphere fluxes between the ensemble averages of simulations with and without land-use changes by the end of the twenty-first century. Even though common land-use scenarios are used, the areas of crops and pastures are specific for each Earth system model (ESM). This is due to different interpretations of land-use classes. The analysis reveals that fossil fuel forcing dominates land-use forcing. In addition, the effects of land-use changes are globally not significant, whereas they are significant for regions with land-use changes exceeding 10%. For these regions, three out of six participating models—the Second Generation Canadian Earth System Model (CanESM2); Hadley Centre Glo...


Nature Climate Change | 2014

Land management and land-cover change have impacts of similar magnitude on surface temperature

Sebastiaan Luyssaert; Mathilde Jammet; Paul C. Stoy; Stephen Estel; Julia Pongratz; Eric Ceschia; Galina Churkina; Axel Don; Karl-Heinz Erb; Morgan Ferlicoq; Bert Gielen; Thomas Grünwald; R. A. Houghton; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Tobias Kuemmerle; Tuomas Laurila; Annalea Lohila; Denis Loustau; Matthew J. McGrath; Patrick Meyfroidt; E.J. Moors; Kim Naudts; Kim Novick; Juliane Otto; Kim Pilegaard; Casimiro Pio; Serge Rambal; Corinna Rebmann

The direct effects of land-cover change on surface climate are increasingly well understood, but fewer studies have investigated the consequences of the trend towards more intensive land management practices. Now, research investigating the biophysical effects of temperate land-management changes reveals a net warming effect of similar magnitude to that driven by changing land cover.


Nature | 2016

Reversal of ocean acidification enhances net coral reef calcification

Rebecca Albright; Lilian Caldeira; Jessica Hosfelt; Lester Kwiatkowski; Jana K. Maclaren; B. Mason; Yana Nebuchina; Aaron Ninokawa; Julia Pongratz; Katharine Ricke; Tanya Rivlin; Kenneth Schneider; Marine Sesboüé; Kathryn Shamberger; Jacob Silverman; Kennedy Wolfe; Kai Zhu; Ken Caldeira

Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32−]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32−], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.


Earth Interactions | 2006

The Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil

Julia Pongratz; Lahouari Bounoua; Ruth S. DeFries; Douglas C. Morton; Liana O. Anderson; Wolfram Mauser; Carlos A. Klink

Abstract The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution, to compare the effects of different land conversion types. The mechanisms through which changes in vegetation alter surface fluxes of energy, momentum, water, and carbon are analyzed for both wet and dry seasons. It is found that morphological changes contribute to warming and drying of the atmosphere while physiological changes, particularly those associated with a plant’s photosynthetic pathway, counterbalance or exacerbate the warming depending on the type of conversion and the season. Furthermore, this study’s results indicate that initial clearing of evergreen and transition forest to bare ground increases canopy temperature by up to 1.7°C. For subsequent land use such as pasture or c...


Environmental Research Letters | 2011

Climate forcing and response to idealized changes in surface latent and sensible heat

George A. Ban-Weiss; Govindasamy Bala; Long Cao; Julia Pongratz; Ken Caldeira

Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as ‘evaporative cooling’, but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m −2 source of latent heat flux along with a uniform 1 W m −2 sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 ± 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.


Global Biogeochemical Cycles | 2015

Relevance of methodological choices for accounting of land use change carbon fluxes

Eberhard Hansis; Stevens J. Davis; Julia Pongratz

Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like “commitment” accounting period, using land use emissions of 2008–2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions.


Tellus B | 2010

Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2.

Christian H. Reick; Thomas Raddatz; Julia Pongratz; Martin Claussen

Based on a recent reconstruction of anthropogenic land cover change (ALCC), we derive the associated CO2 emissions since 800ADby two independent methods: a bookkeeping approach and a process model. The results are comparedwith the pre-industrial development of atmospheric CO2 known from antarctic ice cores. Our results show that pre-industrial CO2 emissions from ALCC have been relevant for the pre-industrial carbon cycle, although before 1750 AD their trace in atmospheric CO2 is obscured by other processes of similar magnitude. After 1750 AD, the situation is different: the steep increase in atmospheric CO2 until 1850 AD—this is before fossil fuel emissions rose to significant values—is to a substantial part explained by growing emissions from ALCC.


Global Change Biology | 2017

Land management: data availability and process understanding for global change studies

Karl-Heinz Erb; Sebastiaan Luyssaert; Patrick Meyfroidt; Julia Pongratz; Axel Don; Silvia Kloster; Tobias Kuemmerle; Tamara Fetzel; Richard Fuchs; Martin Herold; Helmut Haberl; Chris D. Jones; Erika Marin-Spiotta; Ian McCallum; Eddy Robertson; Verena Seufert; Steffen Fritz; Aude Valade; Andrew J. Wiltshire; A. J. Dolman

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


The Holocene | 2011

Coupled climate–carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between ad 800 and 1850

Julia Pongratz; Ken Caldeira; Christian H. Reick; Martin Claussen

Historic events such as wars and epidemics have been suggested as explanation for decreases in atmospheric CO2 reconstructed from ice cores because of their potential to take up carbon in forests regrowing on abandoned agricultural land. Here, we use a coupled climate–carbon cycle model to assess the carbon and climate effects of the Mongol invasion (~1200 to ~1380), the Black Death (~1347 to ~1400), the conquest of the Americas (~1519 to ~1700), and the fall of the Ming Dynasty (~1600 to ~1650). We calculate their impact on atmospheric CO2 including the response of the global land and ocean carbon pools. It has been hypothesized that these events have contributed to significant increases in land carbon stocks. However, we find that slow regrowth and delayed emissions from past land cover change allow for small increases of the land biosphere carbon storage only during long-lasting events. The effect of these small increases in land biosphere storage on global CO2 is reduced by the response of the global carbon pools and largely offset by concurrent emissions from the rest of the world. None of these events would therefore have affected the atmospheric CO2 concentration by more than 1 ppm. Only the Mongol invasion could have lowered global CO2, but by an amount too small to be resolved by ice cores.


Environmental Research Letters | 2012

Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

Julia Pongratz; Ken Caldeira

The historical contribution of each country to today?s observed atmospheric CO2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today?s atmospheric CO2 concentrations and temperatures. We test this hypothesis by estimating CO2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2?3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution.

Collaboration


Dive into the Julia Pongratz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Caldeira

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Philippe Ciais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Almut Arneth

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge