Julia R. Forman
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia R. Forman.
Human Mutation | 2010
Christopher J. Ricketts; Julia R. Forman; Eleanor Rattenberry; Nicola Bradshaw; Fiona Lalloo; Louise Izatt; Trevor Cole; Ruth Armstrong; V.K. Ajith Kumar; Patrick J. Morrison; A. Brew Atkinson; Fiona Douglas; Steve Ball; Jackie Cook; Umasuthan Srirangalingam; Pip Killick; Gail Kirby; Simon Aylwin; Emma R. Woodward; D. Gareth Evans; Shirley Hodgson; Vicky Murday; Shern L. Chew; John M. C. Connell; Tom L. Blundell; Fiona Macdonald; Eamonn R. Maher
Succinate dehydrogenase B (SDHB) and D (SDHD) subunit gene mutations predispose to adrenal and extraadrenal pheochromocytomas, head and neck paragangliomas (HNPGL), and other tumor types. We report tumor risks in 358 patients with SDHB (n=295) and SDHD (n=63) mutations. Risks of HNPGL and pheochromocytoma in SDHB mutation carriers were 29% and 52%, respectively, at age 60 years and 71% and 29%, respectively, in SDHD mutation carriers. Risks of malignant pheochromocytoma and renal tumors (14% at age 70 years) were higher in SDHB mutation carriers; 55 different mutations (including a novel recurrent exon 1 deletion) were identified. No clear genotype–phenotype correlations were detected for SDHB mutations. However, SDHD mutations predicted to result in loss of expression or a truncated or unstable protein were associated with a significantly increased risk of pheochromocytoma compared to missense mutations that were not predicted to impair protein stability (most such cases had the common p.Pro81Leu mutation). Analysis of the largest cohort of SDHB/D mutation carriers has enhanced estimates of penetrance and tumor risk and supports in silicon protein structure prediction analysis for functional assessment of mutations. The differing effect of the SDHD p.Pro81Leu on HNPGL and pheochromocytoma risks suggests differing mechanisms of tumorigenesis in SDH‐associated HNPGL and pheochromocytoma. Hum Mutat 31:41–51, 2010.
Gastroenterology | 2010
Jane Hartley; Nicholas C. Zachos; Ban Dawood; Mark Donowitz; Julia R. Forman; R. J. Pollitt; Neil V. Morgan; Louise Tee; Paul Gissen; Walter H. A. Kahr; Alex S. Knisely; Steve P. Watson; David Chitayat; I W Booth; Sue Protheroe; Stephen Murphy; Esther de Vries; Deirdre Kelly; Eamonn R. Maher
BACKGROUND & AIMS Trichohepatoenteric syndrome (THES) is an autosomal-recessive disorder characterized by life-threatening diarrhea in infancy, immunodeficiency, liver disease, trichorrhexis nodosa, facial dysmorphism, hypopigmentation, and cardiac defects. We attempted to characterize the phenotype and elucidate the molecular basis of THES. METHODS Twelve patients with classic THES from 11 families had detailed phenotyping. Autozygosity mapping was undertaken in 8 patients from consanguineous families using 250,000 single nucleotide polymorphism arrays and linked regions evaluated using microsatellite markers. Linkage was confirmed to one region from which candidate genes were analyzed. The effect of mutations on protein production and/or localization in hepatocytes and intestinal epithelial cells from affected patients was characterized by immunohistochemistry. RESULTS Previously unrecognized platelet abnormalities (reduced platelet alpha-granules, unusual stimulated alpha granule content release, abnormal lipid inclusions, abnormal platelet canalicular system, and reduced number of microtubules) were identified. The THES locus was mapped to 5q14.3-5q21.2. Sequencing of candidate genes showed mutations in TTC37, which encodes the uncharacterized tetratricopeptide repeat protein, thespin. Bioinformatic analysis suggested thespin to be involved in protein-protein interactions or chaperone. Preliminary studies of enterocyte brush-border ion transporter proteins (sodium hydrogen exchanger 2, sodium hydrogen exchanger 3, aquaporin 7, sodium iodide symporter, and hydrogen potassium adenosine triphosphatase [ATPase]) showed reduced expression or mislocalization in all THES patients with different profiles for each. In contrast the basolateral localization of Na/K ATPase was not altered. CONCLUSIONS THES is caused by mutations in TTC37. TTC37 mutations have a multisystem effect, which may be owing to abnormal stability and/or intracellular localization of TTC37 target proteins.
Journal of Bioinformatics and Computational Biology | 2007
Catherine L. Worth; G. Richard J. Bickerton; Adrian Schreyer; Julia R. Forman; Tammy M. K. Cheng; Semin Lee; Sungsam Gong; David F. Burke; Tom L. Blundell
The prediction of the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on function depends critically on exploiting all information available on the three-dimensional structures of proteins. We describe software and databases for the analysis of nsSNPs that allow a user to move from SNP to sequence to structure to function. In both structure prediction and the analysis of the effects of nsSNPs, we exploit information about protein evolution, in particular, that derived from investigations on the relation of sequence to structure gained from the study of amino acid substitutions in divergent evolution. The techniques developed in our laboratory have allowed fast and automated sequence-structure homology recognition to identify templates and to perform comparative modeling; as well as simple, robust, and generally applicable algorithms to assess the likely impact of amino acid substitutions on structure and interactions. We describe our strategy for approaching the relationship between SNPs and disease, and the results of benchmarking our approach -- human proteins of known structure and recognized mutation.
Proteins | 2009
Julia R. Forman; Catherine L. Worth; G. Richard J. Bickerton; Tim G. Eisen; Tom L. Blundell
Mutations in the VHL gene lead to von Hippel‐Lindau (VHL) disease, a clinically heterogeneous cancer syndrome. Here, we use software and database tools to understand and predict the phenotypes associated with missense mutations in the VHL gene product, pVHL. The protein product pVHL is known to interact with elongin B, elongin C, and the HIF substrate. By analyzing known and predicted interaction sites and predictions of thermodynamic stability change upon mutation, we generate new hypotheses regarding the molecular etiology of renal cell carcinoma (RCC) and pheochromocytoma (PCC) in VHL disease. We find that the molecular causes of RCC and PCC appear to be decoupled. RCC may arise through two distinct mechanisms: disruption of HIF interactions or binding at the elongin B interface. PCC is triggered by mutations which disrupt interactions at the elongin C binding site. These findings have important implications for VHL disease and for nonfamilial RCC, because most cases of clear cell RCC are linked with VHL inactivation. Additionally, predicting effects of genetic variation will be critical as genetic sequencing accelerates; the analytical strategy presented here may elucidate other systems as further data on genetic variation become available. Proteins 2009.
Clinical Endocrinology | 2010
Hakan Cangul; Neil V. Morgan; Julia R. Forman; Halil Saglam; Zehra Aycan; Tahsin Yakut; Tuna Gulten; Omer Tarim; Ece Böber; Yaşar Cesur; Gail Kirby; Shanaz Pasha; Mutlu Karkucak; Erdal Eren; Semra Çetinkaya; Veysel Nijat Baş; Korcan Demir; Sevil Arı Yuca; Esther Meyer; Michaela Kendall; Wolfgang Högler; Timothy Barrett; Eamonn R. Maher
Objective Nonsyndromic autosomal recessively inherited nongoitrous congenital hypothyroidism (CHNG) can be caused by mutations in TSHR, PAX8, TSHB and NKX2‐5. We aimed to investigate mutational frequencies of these genes and genotype/phenotype correlations in consanguineous families with CHNG.
Structure | 2009
Julia R. Forman; Zu Thur Yew; Seema Qamar; Richard Sandford; Emanuele Paci; Jane Clarke
Summary Experimental observation has led to the commonly held view that native state protein topology is the principle determinant of mechanical strength. However, the PKD domains of polycystin-1 challenge this assumption: they are stronger than predicted from their native structure. Molecular dynamics simulations suggest that force induces rearrangement to an intermediate structure, with nonnative hydrogen bonds, that resists unfolding. Here we test this hypothesis directly by introducing mutations designed to prevent formation of these nonnative interactions. We find that these mutations, which only moderately destabilize the native state, reduce the mechanical stability dramatically. The results demonstrate that nonnative interactions impart significant mechanical stability, necessary for the mechanosensor function of polycystin-1. Remarkably, such nonnative interactions result from force-induced conformational change: the PKD domain is strengthened by the application of force.
Journal of Pediatric Endocrinology and Metabolism | 2012
Hakan Cangul; Zehra Aycan; Halil Saglam; Julia R. Forman; Semra Çetinkaya; Omer Tarim; Ece Böber; Yaşar Cesur; Selim Kurtoglu; Feyza Darendeliler; Veysel Nijat Baş; Erdal Eren; Korcan Demir; Aslihan Kiraz; Banu Kucukemre Aydin; Ambika Karthikeyan; Michaela Kendall; Kristien Boelaert; Nick Shaw; Jeremy Kirk; Wolfgang Högler; Timothy Barrett; Eamonn R. Maher
Abstract Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and results in mental retardation if untreated. Eighty-five percent of CH cases are due to disruptions in thyroid organogenesis and are mostly sporadic, but about 2% of thyroid dysgenesis is familial, indicating the involvement of genetic factors in the aetiology of the disease. In this study, we aimed to investigate the Mendelian (single-gene) causes of non-syndromic and non-goitrous congenital hypothyroidism (CHNG) in consanguineous or multicase families. Here we report the results of the second part (n=105) of our large cohort (n=244), representing the largest such cohort in the literature, and interpret the overall results of the whole cohort. Additionally, 50 sporadic cases with thyroid dysgenesis and 400 unaffected control subjects were included in the study. In familial cases, first, we performed potential linkage analysis of four known genes causing CHNG (TSHR, PAX8, TSHB, and NKX2-5) using microsatellite markers and then examined the presence of mutations in these genes by direct sequencing. In addition, in silico analyses of the predicted structural effects of TSHR mutations were performed and related to the mutation specific disease phenotype. We detected eight new TSHR mutations and a PAX8 mutation but no mutations in TSHB and NKX2-5. None of the biallelic TSHR mutations detected in familial cases were present in the cohort of 50 sporadic cases. Genotype/phenotype relationships were established between TSHR mutations and resulting clinical presentations. Here we conclude that TSHR mutations are the main detectable cause of autosomal recessively inherited thyroid dysgenesis. We also outline a new genetic testing strategy for the investigation of suspected autosomal recessive non-goitrous CH.
British Journal of Radiology | 2015
J.E. Scaife; S.J. Thomas; K. Harrison; M. Romanchikova; M.P.F. Sutcliffe; Julia R. Forman; A.M. Bates; Raj Jena; M Andrew Parker; N.G. Burnet
Objective: We sought to calculate accumulated dose (DA) to the rectum in patients treated with radiotherapy for prostate cancer. We were particularly interested in whether dose–surface maps (DSMs) provide additional information to dose–volume histograms (DVHs). Methods: Manual rectal contours were obtained for kilovoltage and daily megavoltage CT scans for 10 participants from the VoxTox study (380 scans). Daily delivered dose recalculation was performed using a ray-tracing algorithm. Delivered DVHs were summated to create accumulated DVHs. The rectum was considered as a cylinder, cut and unfolded to produce daily delivered DSMs; these were summated to produce accumulated DSMs. Results: Accumulated dose-volumes were different from planned in all participants. For one participant, all DA levels were higher and all volumes were larger than planned. For four participants, all DA levels were lower and all volumes were smaller than planned. For each of these four participants, ≥1% of pixels on the accumulated DSM received ≥5 Gy more than had been planned. Conclusion: Differences between accumulated and planned dose-volumes were seen in all participants. DSMs were able to identify differences between DA and planned dose that could not be appreciated from the DVHs. Further work is needed to extract the dose data embedded in the DSMs. These will be correlated with toxicity as part of the VoxTox Programme. Advances in knowledge: DSMs are able to identify differences between DA and planned dose that cannot be appreciated from DVHs alone and should be incorporated into future studies investigating links between DA and toxicity.
Radiotherapy and Oncology | 2017
L.E.A. Shelley; J.E. Scaife; M. Romanchikova; K. Harrison; Julia R. Forman; A.M. Bates; D.J. Noble; R. Jena; Michael Andrew Parker; M.P.F. Sutcliffe; S.J. Thomas; N.G. Burnet
Background and purpose For the first time, delivered dose to the rectum has been calculated and accumulated throughout the course of prostate radiotherapy using megavoltage computed tomography (MVCT) image guidance scans. Dosimetric parameters were linked with toxicity to test the hypothesis that delivered dose is a stronger predictor of toxicity than planned dose. Material and methods Dose–surface maps (DSMs) of the rectal wall were automatically generated from daily MVCT scans for 109 patients within the VoxTox research programme. Accumulated-DSMs, representing total delivered dose, and planned-DSMs, from planning CT data, were parametrised using Equivalent Uniform Dose (EUD) and ‘DSM dose-width’, the lateral dimension of an ellipse fitted to a discrete isodose cluster. Associations with 6 toxicity endpoints were assessed using receiver operator characteristic curve analysis. Results For rectal bleeding, the area under the curve (AUC) was greater for accumulated dose than planned dose for DSM dose-widths up to 70 Gy. Accumulated 65 Gy DSM dose-width produced the strongest spatial correlation (AUC 0.664), while accumulated EUD generated the largest AUC overall (0.682). For proctitis, accumulated EUD was the only reportable predictor (AUC 0.673). Accumulated EUD was systematically lower than planned EUD. Conclusions Dosimetric parameters extracted from accumulated DSMs have demonstrated stronger correlations with rectal bleeding and proctitis, than planned DSMs.
PLOS ONE | 2018
Marie Fisk; Joseph Cheriyan; Divya Mohan; Julia R. Forman; Kaisa M. Mäki-Petäjä; Carmel M. McEniery; Jonathan Fuld; James H. F. Rudd; Nicholas S. Hopkinson; David A. Lomas; John R. Cockcroft; Ruth Tal-Singer; Michael I. Polkey; Ian B. Wilkinson
Background Cardiovascular disease is a major cause of morbidity and mortality in COPD patients. Systemic inflammation associated with COPD, is often hypothesised as a causal factor. p38 mitogen-activated protein kinases play a key role in the inflammatory pathogenesis of COPD and atherosclerosis. Objectives This study sought to evaluate the effects of losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, on vascular inflammation and endothelial function in chronic obstructive pulmonary disease (COPD) patients with systemic inflammation (defined by plasma fibrinogen >2·8g/l). Methods This was a randomised, double-blind, placebo-controlled, Phase II trial that recruited COPD patients with plasma fibrinogen >2.8g/l. Participants were randomly assigned by an online program to losmapimod 7·5mg or placebo tablets twice daily for 16 weeks. Pre- and post-dose 18F-Fluorodeoxyglucose positron emission tomography co-registered with computed tomography (FDG PET/CT) imaging of the aorta and carotid arteries was performed to quantify arterial inflammation, defined by the tissue-to-blood ratio (TBR) from scan images. Endothelial function was assessed by brachial artery flow-mediated dilatation (FMD). Results We screened 160 patients, of whom, 36 and 37 were randomised to losmapimod or placebo. The treatment effect of losmapimod compared to placebo was not significant, at -0·05 for TBR (95% CI: -0·17, 0·07), p = 0·42, and +0·40% for FMD (95% CI: -1·66, 2·47), p = 0·70. The frequency of adverse events reported was similar in both treatment groups. Conclusions In this plasma fibrinogen-enriched study, losmapimod had no effect on arterial inflammation and endothelial function at 16 weeks of treatment, although it was well tolerated with no significant safety concerns. These findings do not support the concept that losmapimod is an effective treatment for the adverse cardiovascular manifestations of COPD.