Julia Regnery
Colorado School of Mines
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Regnery.
Environmental Science & Technology | 2014
Ryan W. Holloway; Julia Regnery; Long D. Nghiem; Tzahi Y. Cath
A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.
Chemosphere | 2015
Julia Regnery; Jessica Barringer; Alexandre D. Wing; Christiane Hoppe-Jones; Jennifer Teerlink; Jörg E. Drewes
The performance of a full-scale riverbank filtration facility in Colorado was evaluated from initial start-up over a period of seven years including the impact of seasonal variations to determine whether sustainable attenuation of various chemical constituents could be achieved. Both, annual and seasonal average concentrations were determined for several wastewater-derived constituents including dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm, nitrate, phosphate for the years 2006, 2009, 2010, 2012, and trace organic chemicals (TOrC) for years 2009, 2010, and 2012. ANOVA analyses and Students t-tests were performed to evaluate the consistency of contaminant attenuation at the site. Findings revealed no significant statistical differences for any of the bulk parameters with the exception of phosphate suggesting a highly reliable attenuation of DOC and nitrate from start-up to full-scale performance. Phosphate attenuation, however, exhibited a steady decline, which was likely attributed to exhaustion of sorption sites in the subsurface porous media. The rivers flow regime influenced both occurrence levels and attenuation of TOrC during riverbank filtration, i.e. less river discharge resulted in higher TOrC concentrations and lower proportion of river water in the recovered groundwater. Differences in removal performance between annual data sets for caffeine, trimethoprim, sulfamethoxazole, and carbamazepine were caused by variations in the source; concentrations in riverbank filtrate remained similar over several years. The seasonal assessment for TOrC revealed steady or improving removal between winter and summer seasons based on the statistical analysis with atenolol being the only exception likely due to an increased microbial activity at elevated temperatures.
Science of The Total Environment | 2013
D.K. Stepien; Julia Regnery; Christoph Merz; Wilhelm Püttmann
The behavior of organophosphates and ethers during riverbank filtration and groundwater flow was assessed to determine their suitability as organic tracers. Four sampling campaigns were conducted at the Oderbruch polder, Germany to establish the presence of chlorinated flame retardants (TCEP, TCPP, TDCP), non-chlorinated plasticizers (TBEP, TiBP, TnBP), and hydrophilic ethers (1,4-dioxane, monoglyme, diglyme, triglyme, tetraglyme) in the Oder River, main drainage ditch, and anoxic aquifer. Selected parameters were measured in order to determine the hydro-chemical composition of both, river water and groundwater. The results of the study confirm that organophosphates (OPs) are more readily attenuated during bank filtration compared to ethers. Both in the river and the groundwater, TCPP was the most abundant OP with concentrations in the main drainage ditch ranging between 105 and 958 ng L(-1). 1,4-dioxane, triglyme, and tetraglyme demonstrated persistent behavior during bank filtration and in the anoxic groundwater. In the drainage ditch concentrations of 1,4-dioxane, triglyme, and tetraglyme ranged between 1090 and 1467 ng L(-1), 37 and 149 ng L(-1), and 496 and 1403 ng L(-1), respectively. A positive correlation was found for the inorganic tracer chloride with 1,4-dioxane and tetraglyme. These results confirm the possible application of these ethers as environmental organic tracers. Both inorganic and organic compounds showed temporal variability in the surface- and groundwater. Discharge of the river water, concentrations of analytes at the time of infiltration and attenuation were identified as factors influencing the variable amounts of the analytes in the surface and groundwater. These findings are also of great importance for the production of drinking water via bank filtration and natural and artificial groundwater recharge as the physicochemical properties of ethers create challenges in their removal.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2014
Walter Q. Betancourt; Masaaki Kitajima; Alexandre D. Wing; Julia Regnery; Jörg E. Drewes; Ian L. Pepper; Charles P. Gerba
Managed aquifer recharge (MAR) systems such as riverbank filtration and soil-aquifer treatment all involve the use of natural subsurface systems to improve the quality of recharged water (i.e. surface water, stormwater, reclaimed water) before reuse. During MAR, water is either infiltrated via basins, subsurface injected or abstracted from wells adjacent to rivers. The goal of this study was to assess the removal of selected enteric viruses and a potential surrogate for virus removal at three full-scale MAR systems located in different regions of the United States (Arizona, Colorado, and California). Samples of source water (i.e., river water receiving treated wastewater and reclaimed water) before recharge and recovered groundwater at all three sites were tested for adenoviruses, enteroviruses, Aichi viruses and pepper mild mottle virus (PMMoV) by quantitative polymerase chain reaction (qPCR). Samples of groundwater positive for any virus were also tested for the presence of infectious virus by cell culture. PMMoV was the most commonly detected virus in the groundwater samples. Infectious enteric viruses (reovirus) were only detected in one groundwater sample with a subsurface residence time of 5 days. The results suggested that in groundwater with a residence time of greater than 14 days all of the viruses are removed below detection indicating a 1 to greater than 5 log removal depending upon the type of virus. Given its behavior, PMMoV may be suitable to serve as a conservative tracer of enteric virus removal in managed aquifer treatment systems.
Environmental Science & Technology | 2016
D. Vuono; Julia Regnery; Dong Li; Zackary L. Jones; Ryan W. Holloway; Jörg E. Drewes
The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems.
Journal of Contaminant Hydrology | 2015
Julia Regnery; Alexandre D. Wing; Mazahirali Alidina; Jörg E. Drewes
This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.
Analytical Methods | 2016
Julia Regnery; Bryan D. Coday; Stephanie M. Riley; Tzahi Y. Cath
A versatile method was developed for the quantitative analysis of semi-volatile linear aliphatic hydrocarbons in the n-C10 to n-C32 range and 16 polycyclic aromatic hydrocarbons (PAH) in hydraulic fracturing wastewaters using solid-phase extraction (SPE) on disposable octadecyl-bonded silica (C18) cartridges followed by gas chromatography-mass spectrometry. Matrix spikes revealed SPE recovery rates in the range of 38–120% for linear aliphatic hydrocarbons (n-C10 to n-C32) and 84–116% for PAH. Limits of detection were in the lower ng L−1 range for both compound groups. To prove the practicability of the developed method in real applications, the treatment performance of a hybrid forward osmosis–reverse osmosis pilot system treating produced water from the Denver-Julesburg basin in Colorado was assessed over a period of eight weeks. The removal efficiency of the overall system after reverse osmosis treatment for n-alkanes was constantly better than 99.4%. The lower molecular weight PAH naphthalene, fluorene, and phenanthrene were the most abundant PAH detected in the produced water feed, filtrate and concentrate streams during treatment. Their concentrations in the produced water feed reached up to 359.3 μg L−1, 40.7 μg L−1, and 68.3 μg L−1, respectively. However, naphthalene (0.5 ± 0.2 μg L−1) was the only analyzed PAH in the final treated water that exceeded the general US Environmental Protection Agency maximum contaminant level for PAH in drinking water of 0.2 μg L−1.
Science of The Total Environment | 2018
Stephanie M. Riley; Danika C. Ahoor; Julia Regnery; Tzahi Y. Cath
Dissolved organic matter (DOM) present in oil and gas (O&G) produced water and fracturing flowback was characterized and quantified by multiple analytical techniques throughout a hybrid biological-physical treatment process. Quantitative and qualitative analysis of DOM by liquid chromatography - organic carbon detection (LC-OCD), liquid chromatography-high-resolution mass spectrometry (LC-HRMS), gas chromatography-mass spectrometry (GC-MS), and 3D fluorescence spectroscopy, demonstrated increasing removal of all groups of DOM throughout the treatment train, with most removal occurring during biological pretreatment and some subsequent removal achieved during membrane treatment. Parallel factor analysis (PARAFAC) further validated these results and identified five fluorescent components, including DOM described as humic acids, fulvic acids, proteins, and aromatics. Tryptophan-like compounds bound by complexation to humics/fulvics were most difficult to remove biologically, while aromatics (particularly low molecular weight neutrals) were more challenging to remove with membranes. Strong correlation among PARAFAC, LC-OCD, LC-HRMS, and GC-MS suggests that PARAFAC can be a quick, affordable, and accurate tool for evaluating the presence or removal of specific DOM groups in O&G wastewater.
Water Science and Technology | 2014
Jörg E. Drewes; Dong Li; Julia Regnery; Mazahirali Alidina; Alexandre D. Wing; Christiane Hoppe-Jones
By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions.
Critical Reviews in Environmental Science and Technology | 2017
Julia Regnery; Charles P. Gerba; Eric R.V. Dickenson; Jörg E. Drewes
ABSTRACT There is increasing interest worldwide to utilize unconventional water resources such as reclaimed water, urban stormwater, or impaired surface water to augment drinking water supplies. Given the presence of traditional and emerging microbial and chemical contaminants (e.g., pathogens, trace organic chemicals, nutrients, trace metals) in these waters, efficient and reliable treatment processes are needed to assure a product water quality that is protective of public health. Natural treatment processes such as managed aquifer recharge (MAR) combine the benefits of efficient biological treatment for these contaminants with a low carbon footprint and a residual free operation. The drawbacks of MAR are the rather large space requirements and a lack of process understanding that can guide more efficient design and operation of these facilities. Among appropriate design and operational parameters as well as geochemical and hydrological conditions, retention time has been identified as a key parameter to achieve attenuation of microbial and chemical contaminants during MAR. Shorter retention time can result in significantly reduced footprints and thus facilitate the integration of MAR into urban and peri-urban water infrastructure. However, different minimum retention times are required to achieve reliable removal of microbial and chemical contaminants.