Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Reimann is active.

Publication


Featured researches published by Julia Reimann.


Frontiers in Microbiology | 2012

Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius

Michaela Wagner; Marleen van Wolferen; Alexander Wagner; Kerstin Lassak; Benjamin H. Meyer; Julia Reimann; Sonja-Verena Albers

For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Simple and elegant design of a virion egress structure in Archaea

Tessa E. F. Quax; Soizick Lucas; Julia Reimann; Gérard Pehau-Arnaudet; Marie-Christine Prévost; Patrick Forterre; Sonja-Verena Albers; David Prangishvili

Some viruses of Archaea use an unusual egress mechanism that involves the formation of virus-associated pyramids (VAPs) on the host cell surface. At the end of the infection cycle, these structures open outward and create apertures through which mature virions escape from the cell. Here we describe in detail the structure and composition of VAPs formed by the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in cells of its hyperthermophilic archaeal host. We show that the VAPs are stable and autonomous assemblies that can be isolated from membranes of infected cells and purified without affecting their structure. The purified VAPs are heterogeneous in size, reflecting the dynamics of VAP development in a population of infected cells; however, they have a uniform geometry, consisting of seven isosceles triangular faces forming a baseless pyramid. Biochemical and immunoelectron microscopy analyses revealed that the 10-kDa P98 protein encoded by the SIRV2 virus is the sole component of the VAPs. The VAPs were produced in Sulfolobus acidocaldarius and Escherichia coli by heterologous expression of the SIRV2-P98 gene. The results confirm that P98 is the only constituent of the VAPs and demonstrate that no other viral protein is involved in the assembly of pyramids. P98 was able to produce stable structures under conditions ranging from moderate to extremely high temperatures (80 °C) and from neutral to extremely acidic pH (pH 2), demonstrating another remarkable property of this exceptional viral protein.


Molecular Microbiology | 2012

Regulation of archaella expression by the FHA and von Willebrand domain‐containing proteins ArnA and ArnB in Sulfolobus acidocaldarius

Julia Reimann; Kerstin Lassak; Sunia Khadouma; Thijs J. G. Ettema; Nuan Yang; Arnold J. M. Driessen; Andreas Klingl; Sonja-Verena Albers

The ability of microorganisms to sense and respond to sudden changes in their environment is often based on regulatory systems comprising reversible protein phosphorylation. The archaellum (former: archaeal flagellum) is used for motility in Archaea and therefore functionally analogous to the bacterial flagellum. In contrast with archaellum‐mediated movement in certain members of the Euryarchaeota, this process, including its regulation, remains poorly studied in crenarchaeal organisms like Sulfolobus species. Recently, it was shown in Sulfolobus acidocaldarius that tryptone limiting conditions led to the induction of archaella expression and assembly. Here we have identified two proteins, the FHA domain‐containing protein ArnA and the vWA domain‐containing protein ArnB that are involved in regulating archaella expression in S. acidocaldarius. Both proteins are phosphorylated by protein kinases in vitro and interact strongly in vivo. Phenotypic analyses revealed that these two proteins are repressors of archaella expression. These results represent the first step in understanding the networks that underlie regulation of cellular motility in Crenarchaeota and emphasize the importance of protein phosphorylation in the regulation of cellular processes in the Archaea.


Extremophiles | 2010

Hot standards for the thermoacidophilic archaeon Sulfolobus solfataricus

Melanie Zaparty; Dominik Esser; Susanne Gertig; Patrick Haferkamp; Theresa Kouril; Andrea Manica; Trong Khoa Pham; Julia Reimann; Kerstin Schreiber; Pawel Sierocinski; Daniela Teichmann; Marleen van Wolferen; Mathias von Jan; Patricia Wieloch; Sonja V. Albers; Arnold J. M. Driessen; Hans-Peter Klenk; Christa Schleper; Dietmar Schomburg; John van der Oost; Phillip C. Wright; Bettina Siebers

Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology (“SulfoSYS”)-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the “–omics” approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics.


Journal of Proteome Research | 2012

Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus.

Dominik Esser; Trong Khoa Pham; Julia Reimann; Sonja-Verena Albers; Bettina Siebers; Phillip C. Wright

Protein phosphorylation is known to occur in Archaea. However, knowledge of phosphorylation in the third domain of life is rather scarce. Homology-based searches of archaeal genome sequences reveals the absence of two-component systems in crenarchaeal genomes but the presence of eukaryotic-like protein kinases and protein phosphatases. Here, the influence of the offered carbon source (glucose versus tryptone) on the phospho-proteome of Sulfolobus solfataricus P2 was studied by precursor acquisition independent from ion count (PAcIFIC). In comparison to previous phospho-proteome studies, a high number of phosphorylation sites (1318) located on 690 phospho-peptides from 540 unique phospho-proteins were detected, thus increasing the number of currently known archaeal phospho-proteins from 80 to 621. Furthermore, a 25.8/20.6/53.6 Ser/Thr/Tyr percentage ratio with an unexpectedly high predominance of tyrosine phosphorylation was detected. Phospho-proteins in most functional classes (21 out of 26 arCOGs) were identified, suggesting an important regulatory role in S. solfataricus. Focusing on the central carbohydrate metabolism in response to the offered carbon source, significant changes were observed. The observed complex phosphorylation pattern hints at an important physiological function of protein phosphorylation in control of the central carbohydrate metabolism, which might particularly operate in channeling carbon flux into the respective metabolic pathways.


Molecular & Cellular Proteomics | 2013

Archaeal Signal Transduction: Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius

Julia Reimann; Dominik Esser; Alvaro Orell; Fabian Amman; Trong Khoa Pham; Josselin Noirel; Ann-Christin Lindås; Rolf Bernander; Phillip C. Wright; Bettina Siebers; Sonja-Verena Albers

In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids.

Bertram Daum; Tessa E. F. Quax; Martin Sachse; Deryck J. Mills; Julia Reimann; Sabine Häder; Cosmin Saveanu; Patrick Forterre; Sonja-Verena Albers; Werner Kühlbrandt; David Prangishvili

Significance The Sulfolobus islandicus rod-shaped virus 2 (SIRV2) has developed unique mechanisms to penetrate the plasma membrane and S-layer of its host Sulfolobus islandicus in order to leave the cell after replication. SIRV2 encodes the 10-kDa protein PVAP, which assembles into sevenfold symmetric virus-associated pyramids (VAPs) in the host cell plasma membrane. Toward the end of the viral replication cycle, these VAPs open to form pores through the plasma membrane and S-layer, allowing viral egress. Here we show that PVAP inserts spontaneously and forms VAPs in any kind of biological membrane. By electron cryotomography we have obtained a 3D map of the VAP and present a model describing the assembly of PVAP into VAPs. Our findings open new avenues for a large variety of biotechnological applications. Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.


eLife | 2015

Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39

Fabian Blombach; Enrico Salvadori; Thomas Fouqueau; Jun Yan; Julia Reimann; Carol Sheppard; Katherine Smollett; Sonja V Albers; Christopher W. M. Kay; Konstantinos Thalassinos; Finn Werner

Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.08378.001


Proceedings of the National Academy of Sciences of the United States of America | 2012

Chromosome segregation in Archaea mediated by a hybrid DNA partition machine

Anne K. Kalliomaa-Sanford; Fernando A. Rodriguez-Castañeda; Brett N. McLeod; Victor Latorre-Roselló; Jasmine H. Smith; Julia Reimann; Sonja V. Albers; Daniela Barillà

Eukarya and, more recently, some bacteria have been shown to rely on a cytoskeleton-based apparatus to drive chromosome segregation. In contrast, the factors and mechanisms underpinning this fundamental process are underexplored in archaea, the third domain of life. Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segrosome consisting of two interacting proteins, SegA and SegB, that play a key role in genome segregation in this organism. SegA is an ortholog of bacterial, Walker-type ParA proteins, whereas SegB is an archaea-specific factor lacking sequence identity to either eukaryotic or bacterial proteins, but sharing homology with a cluster of uncharacterized factors conserved in both crenarchaea and euryarchaea, the two major archaeal sub-phyla. We show that SegA is an ATPase that polymerizes in vitro and that SegB is a site-specific DNA-binding protein contacting palindromic sequences located upstream of the segAB cassette. SegB interacts with SegA in the presence of nucleotides and dramatically affects its polymerization dynamics. Our data demonstrate that SegB strongly stimulates SegA polymerization, possibly by promoting SegA nucleation and accelerating polymer growth. Increased expression levels of segAB resulted in severe growth and chromosome segregation defects, including formation of anucleate cells, compact nucleoids confined to one half of the cell compartment and fragmented nucleoids. The overall picture emerging from our findings indicates that the SegAB complex fulfills a crucial function in chromosome segregation and is the prototype of a DNA partition machine widespread across archaea.


Microbiology | 2012

The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.

Christian Völlmecke; Steffen L. Drees; Julia Reimann; Sonja-Verena Albers; Mathias Lübben

Certain heavy metal ions such as copper and zinc serve as essential cofactors of many enzymes, but are toxic at high concentrations. Thus, intracellular levels have to be subtly balanced. P-type ATPases of the P(IB)-subclass play a major role in metal homeostasis. The thermoacidophile Sulfolobus solfataricus possesses two P(IB)-ATPases named CopA and CopB. Both enzymes are present in cells grown in copper-depleted medium and are accumulated upon an increase in the external copper concentration. We studied the physiological roles of both ATPases by disrupting genes copA and copB. Neither of them affected the sensitivity of S. solfataricus to reactive oxygen species, nor were they a strict prerequisite to the biosynthesis of the copper protein cytochrome oxidase. Deletion mutant analysis demonstrated that CopA is an effective copper pump at low and high copper concentrations. CopB appeared to be a low-affinity copper export ATPase, which was only relevant if the media copper concentration was exceedingly high. CopA and CopB thus act as resistance factors to copper ions at overlapping concentrations. Moreover, growth tests on solid media indicated that both ATPases are involved in resistance to silver.

Collaboration


Dive into the Julia Reimann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettina Siebers

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Dominik Esser

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dietmar Schomburg

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Zaparty

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge