Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia S. Woertink is active.

Publication


Featured researches published by Julia S. Woertink.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol

Julia S. Woertink; Pieter J. Smeets; Marijke H. Groothaert; Michael A. Vance; Bert F. Sels; Robert A. Schoonheydt; Edward I. Solomon

Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction.


Faraday Discussions | 2011

Copper Dioxygen (Bio)Inorganic Chemistry

Edward I. Solomon; Jake W. Ginsbach; David E. Heppner; Matthew T. Kieber-Emmons; Christian H. Kjaergaard; Pieter J. Smeets; Li Tian; Julia S. Woertink

Cu/O2 intermediates in biological, homogeneous, and heterogeneous catalysts exhibit unique spectral features that reflect novel geometric and electronic structures that make significant contributions to reactivity. This review considers how the respective intermediate electronic structures overcome the spin-forbidden nature of O2 binding, activate O2 for electrophilic aromatic attack and H-atom abstraction, catalyze the 4 e- reduction of O2 to H2O, and discusses the role of exchange coupling between Cu ions in determining reactivity.


Inorganic Chemistry | 2010

Transition-Metal Ions in Zeolites: Coordination and Activation of Oxygen

Pieter J. Smeets; Julia S. Woertink; Bert F. Sels; Edward I. Solomon; Robert A. Schoonheydt

Zeolites containing transition-metal ions (TMIs) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMIs Cu, Co, and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMIs preferably occupy exchange sites in six-membered oxygen rings (6MR), where the TMIs preferentially coordinate with the O atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extralattice O atoms during high-temperature pretreatments can result in autoreduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O(2) results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N(2)O and the selective oxidation of methane into methanol. An activated oxygen species, called alpha-O, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive alpha-O can only be formed with N(2)O, not with O(2). O(2)-activated Co intermediates in faujasite (FAU) zeolites can selectively oxidize alpha-pinene and epoxidize styrene. In Co-FAU, Co(III) superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5, various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu](2+) core (Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 18908-18913). Overall, O(2) activation depends on the interplay of structural factors such as the type of zeolite and sizes of the channels and cages and chemical factors such as the Si/Al ratio and the nature, charge, and distribution of the charge-balancing cations. The presence of several different TMI sites hinders the direct study of the spectroscopic features of the active site. Spectroscopic techniques capable of selectively probing these sites, even if they only constitute a minor fraction of the total amount of TMI sites, are thus required. Fundamental knowledge of the geometric and electronic structures of the reactive active site can help in the design of novel selective oxidation catalysts.


Inorganic Chemistry | 2010

Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors that Determine the Ground State

Julia S. Woertink; Li Tian; Debabrata Maiti; Heather R. Lucas; Richard A. Himes; Kenneth D. Karlin; Frank Neese; Christian Würtele; Max C. Holthausen; Eckhard Bill; Jörg Sundermeyer; Siegfried Schindler; Edward I. Solomon

A variety of techniques including absorption, magnetic circular dichroism (MCD), variable-temperature, variable-field MCD (VTVH-MCD), and resonance Raman (rR) spectroscopies are combined with density functional theory (DFT) calculations to elucidate the electronic structure of the end-on (η(1)) bound superoxo-Cu(II) complex [TMG(3)trenCuO(2)](+) (where TMG(3)tren is 1,1,1-tris[2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl]amine). The spectral features of [TMG(3)trenCuO(2)](+) are assigned, including the first definitive assignment of a superoxo intraligand transition in a metal-superoxo complex, and a detailed description of end-on superoxo-Cu(II) bonding is developed. The lack of overlap between the two magnetic orbitals of [TMG(3)trenCuO(2)](+) eliminates antiferromagnetic coupling between the copper(II) and the superoxide, while the significant superoxo π*(σ) character of the copper dz(2) orbital leads to its ferromagnetically coupled, triplet, ground state.


Journal of the American Chemical Society | 2014

Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric−Superoxo Complex

Jung Yoon Lee; Ryan L. Peterson; Kei Ohkubo; Isaac Garcia-Bosch; Richard A. Himes; Julia S. Woertink; Cathy D. Moore; Edward I. Solomon; Shunichi Fukuzumi; Kenneth D. Karlin

To obtain mechanistic insights into the inherent reactivity patterns for copper(I)–O2 adducts, a new cupric–superoxo complex [(DMM-tmpa)CuII(O2•–)]+ (2) [DMM-tmpa = tris((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amine] has been synthesized and studied in phenol oxidation–oxygenation reactions. Compound 2 is characterized by UV–vis, resonance Raman, and EPR spectroscopies. Its reactions with a series of para-substituted 2,6-di-tert-butylphenols (p-X-DTBPs) afford 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) in up to 50% yields. Significant deuterium kinetic isotope effects and a positive correlation of second-order rate constants (k2) compared to rate constants for p-X-DTBPs plus cumylperoxyl radical reactions indicate a mechanism that involves rate-limiting hydrogen atom transfer (HAT). A weak correlation of (kBT/e) ln k2 versus Eox of p-X-DTBP indicates that the HAT reactions proceed via a partial transfer of charge rather than a complete transfer of charge in the electron transfer/proton transfer pathway. Product analyses, 18O-labeling experiments, and separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further mechanistic insights. After initial HAT, a second molar equiv of 2 couples to the phenoxyl radical initially formed, giving a CuII–OO–(ArO′) intermediate, which proceeds in the case of p-OR-DTBP substrates via a two-electron oxidation reaction involving hydrolysis steps which liberate H2O2 and the corresponding alcohol. By contrast, four-electron oxygenation (O–O cleavage) mainly occurs for p-R-DTBP which gives 18O-labeled DTBQ and elimination of the R group.


Inorganic Chemistry | 2008

Copper Dioxygen Adducts: Formation of Bis(μ-oxo)dicopper(III) versus (μ-1,2)Peroxodicopper(II) Complexes with Small Changes in One Pyridyl-Ligand Substituent

Debabrata Maiti; Julia S. Woertink; Amy A. Narducci Sarjeant; Edward I. Solomon; Kenneth D. Karlin

The preference for the formation of a particular Cu 2O 2 isomer coming from (ligand)-Cu (I)/O 2 reactivity can be regulated with the steric demands of a TMPA (tris(2-pyridylmethyl)amine) derived ligand possessing 6-pyridyl substituents on one of the three donor groups of the tripodal tetradentate ligand. When this substituent is an -XHR group (X = N or C) the traditional Cu (I)/O 2 adduct forms a (mu-1,2)peroxodicopper(II) species ( A). However, when the substituent is the slightly bulkier XR 2 moiety {aryl or NR 2 (R not equal H)}, a bis(mu-oxo)dicopper(III) structure ( C) is favored. The reactivity of one of the bis(mu-oxo)dicopper(III) species, [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) (6tbp = (6- (t)Bu-phenyl-2-pyridylmethyl)bis(2-pyridylmethyl)amine), was probed, and for the first time, exogenous toluene or ethylbenzene hydrocarbon oxygenation reactions were observed. Typical monooxygenase chemistry occurred: the benzaldehyde product includes an 18-O atom for toluene/ 7- (1) (8)O 2 reactivity, and a H-atom abstraction by 7-O 2 is apparent from study of its reactions with ArOH substrates, as well as the determination of k H/ k D approximately 7 in the toluene oxygenation (i.e., PhCH 3 vs PhCD 3 substrates). Proposed courses of reaction are presented, including the possible involvement of PhCH 2OO (*) and its subsequent reaction with copper(I) complex, the latter derived from dynamic solution behavior of 7-O 2 . External TMPA ligand exchange for copper in 7-O 2 and O-O bond (re)formation chemistry, along with the ability to protonate 7-O 2 and release of H 2O 2 indicate the presence of an equilibrium between [{(6tbp)Cu (III)} 2(O (2-)) 2] (2+) ( 7-O 2 ) and a (mu-1,2)peroxodicopper(II) form.


Journal of the American Chemical Society | 2012

Geometric and Electronic Structure of [{Cu(MeAN)}2(μ-η2:η2(O22−))]2+ with an Unusually Long O–O Bond: O–O Bond Weakening vs Activation for Reductive Cleavage

Ga Young Park; Munzarin F. Qayyum; Julia S. Woertink; Keith O. Hodgson; Britt Hedman; Amy A. Narducci Sarjeant; Edward I. Solomon; Kenneth D. Karlin

Certain side-on peroxo-dicopper(II) species with particularly low ν(O-O) (710-730 cm(-1)) have been found in equilibrium with their bis-μ-oxo-dicopper(III) isomer. An issue is whether such side-on peroxo bridges are further activated for O-O cleavage. In a previous study (Liang, H.-C., et al. J. Am. Chem. Soc.2002, 124, 4170), we showed that oxygenation of the three-coordinate complex [Cu(I)(MeAN)](+) (MeAN = N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) leads to a low-temperature stable [{Cu(II)(MeAN)}(2)(μ-η(2):η(2)-O(2)(2-))](2+) peroxo species with low ν(O-O) (721 cm(-1)), as characterized by UV-vis absorption and resonance Raman (rR) spectroscopies. Here, this complex has been crystallized as its SbF(6)(-) salt, and an X-ray structure indicates the presence of an unusually long O-O bond (1.540(5) Å) consistent with the low ν(O-O). Extended X-ray absorption fine structure and rR spectroscopic and reactivity studies indicate the exclusive formation of [{Cu(II)(MeAN)}(2)(μ-η(2):η(2)-O(2)(2-))](2+) without any bis-μ-oxo-dicopper(III) isomer present. This is the first structure of a side-on peroxo-dicopper(II) species with a significantly long and weak O-O bond. DFT calculations show that the weak O-O bond results from strong σ donation from the MeAN ligand to Cu that is compensated by a decrease in the extent of peroxo to Cu charge transfer. Importantly, the weak O-O bond does not reflect an increase in backbonding into the σ* orbital of the peroxide. Thus, although the O-O bond is unusually weak, this structure is not further activated for reductive cleavage to form a reactive bis-μ-oxo dicopper(III) species. These results highlight the necessity of understanding electronic structure changes associated with spectral changes for correlations to reactivity.


Inorganic Chemistry | 2009

Molecular oxygen and sulfur reactivity of a cyclotriveratrylene derived trinuclear copper(I) complex.

Debabrata Maiti; Julia S. Woertink; Reza A. Ghiladi; Edward I. Solomon; Kenneth D. Karlin

Our continuing efforts into developing copper coordination chemistry relevant to dioxygen-processing copper proteins has led us to design and synthesize a cyclotriveratrylene (CTV)-based trinucleating ligand, CTV-TMPA, which employs tetradentate tris(2-pyridylmethyl)-amine chelates (TMPA) for their copper ion binding sites. Binding of three copper ions per CTV-TMPA unit was established by various chemical and spectroscopic methods such as UV-vis and resonance Raman (rR) spectroscopies. The following complexes were observed: A tricopper(I) complex [(CTV-TMPA)Cu(I)(3)](3+) (1), a CO adduct [(CTV-TMPA)Cu(I)(3)(CO)(3)](3+) (1-CO; nu(C=O) = 2094 cm(-1)), a triphenylphosphine adduct [(CTV-TMPA)Cu(I)(3)(PPh(3))(3)](3+) (1-PPh(3)), a tricopper(II) complex [(CTV-TMPA)Cu(II)(3)](3+) (1-Ox), and its tris-monochloride or tris-monobromide adducts. Also, introduction of dioxygen to the -80 degrees C solutions of 1 leads to O(2)-adducts, the first example of a synthetic copper complex which can stabilize a mononuclear Cu(II)-superoxo and dinuclear peroxo species simultaneously within one complex {[Cu] = 1.53 mM in THF: (mu-1,2-peroxo complex, lambda(max) = 543 (epsilon 9650) nm): nu(O-O) = 825 ((Delta(18)O(2)) = -47) cm(-1); nu(Cu-O) = 506 ((Delta(18)O(2)) = -26) cm(-1): (superoxo complex, lambda(max) = 427 (epsilon 3150) nm): nu(O-O) = 1129 ((Delta(18)O(2)) = -60) cm(-1); nu(Cu-O) = 463 ((Delta(18)O(2)) = -27) cm(-1)}. Elemental sulfur reacts reversibly with 1 leading to a (proposed) hexanuclear species [{(CTV-TMPA)Cu(II)(3)}(2)(mu-1,2-S(2)(2-))(3)](6+) (1-S) {lambda(max) = 544 (epsilon 7270) nm}, possessing one dicopper(II)-disulfide structural type: {THF solvent) nu(S-S) = 489 ((Delta(34)S) = -10) cm(-1); nu(Cu-S) = 307 ((Delta(34)S) = -5) cm(-1)}. Derivation of spectroscopic, structural, and chemical conclusions were aided by the study of a close mononuclear analogue with one pyridyl group of the TMPA parent possessing a 6-CH(2)OCH(3) substituent, this being part of the CTV-TMPA architecture.


Inorganic Chemistry | 2009

Copper(I)/O2 Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to μ-1,2-Peroxo−Dicopper(II) Species

Yunho Lee; Ga Young Park; Heather R. Lucas; Peter L. Vajda; Kaliappan Kamaraj; Michael A. Vance; Ashley E. Milligan; Julia S. Woertink; Maxime A. Siegler; Amy A. Narducci Sarjeant; Lev N. Zakharov; Arnold L. Rheingold; Edward I. Solomon; Kenneth D. Karlin

Cuprous and cupric complexes with the new imidazolyl containing tripodal tetradentate ligands {L(MIm), (1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine, and L(EIm), 2-(1H-imidazol-4-yl)-N,N-bis((pyridin-2-yl)methyl)ethanamine}, have been investigated to probe differences in their chemistry, especially in copper(I)-dioxygen chemistry, compared to that already known for the pyridyl analogue TMPA, tris(2-pyridyl)methyl)amine. Infrared (IR) stretching frequencies obtained from carbon monoxide adducts of [(L(MIm))Cu(I)](+) (1a) and [(L(EIm))Cu(I)](+) (2a) show that the imidazolyl donor is stronger than its pyridyl analogue. Electrochemical data suggest differences in the binding constant of Cu(II) to L(EIm) compared to TMPA and L(MIm), reflecting geometric changes. Oxygenation of [(L(MIm))Cu(I)](+) (1a) in 2-methyltetrahydrofuran (MeTHF) solvent at -128 degrees C leads to an intensely purple colored species with a UV-vis spectrum characteristic of an end-on bound peroxodicopper(II) complex [{(L(MIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (1b(P)) {lambda(max) = 528 nm}, very similar to the previously well characterized complex [{(TMPA)Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) {lambda(max) = 520 nm (epsilon = 12 000 M(-1) cm(-1)), in MeTHF; resonance Raman (rR) spectroscopy: nu(O-O) = 832 (Delta((18)O(2)) = -44) cm(-1)}. In the low-temperature oxygenation of 2a, benchtop (-128 degrees C) and stopped-flow (-90 degrees C) experiments reveal the formation of an initial superoxo-Cu(II) species [(L(EIm))Cu(II)(O(2)(*-))](+) (2b(S)), lambda(max) = 431 nm in THF) . This converts to the low-temperature stable peroxo complex [{(L(EIm))Cu(II)}(2)(mu-1,2-O(2)(2-))](2+) (2b(P)) {rR spectroscopy: nu(O-O) = 822 (Delta((18)O(2)) = -46) cm(-1)}. Complex 2b(P) possess distinctly reduced Cu-O and O-O stretching frequencies and a red-shifted UV-vis feature {to lambda(max) = 535 nm (epsilon = 11 000 M(-1) cm(-1))} compared to the TMPA analogue due to a distortion from trigonal bipyramidal (TBP) to a square pyramidal ligand field. This distortion is supported by the structural characterization of related ligand-copper(II) complexes: A stable tetramer cluster complex [(mu(2)-L(EIm-))(4)(Cu(II))(4)](4+), obtained from thermal decomposition of 2b(P) (with formation of H(2)O(2)), also exhibits a distorted square pyramidal Cu(II) ion geometry as does the copper(II) complex [(L(EIm))Cu(II)(CH(3)CN)](2+) (2c), characterized by X-ray crystallography and solution electron paramagnetic resonance (EPR) spectroscopy.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Copper–sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin

Nathan A. Sieracki; Shiliang Tian; Ryan G. Hadt; Jun-Long Zhang; Julia S. Woertink; Mark J. Nilges; Furong Sun; Edward I. Solomon; Yi Lu

Significance Posttranslational modification of cysteinyl thiolate to sulfenate has been found to play important roles in biology, such as redox signaling, and enzyme and gene regulation. Nitrile hydratase and thiocyanate hydrolase with cobalt and iron cofactors are the few known metalloenzymes requiring sulfenate coordination for reactivity. No other metal ions have been found to stably bind sulfenate in a biological context. Here we report a copper–sulfenate complex characterized in a protein environment, formed at the active site of a cavity mutant of Pseudomonas aeruginosa azurin. Computational studies strongly suggest that noncovalent interactions in the secondary coordination sphere are critical in stabilizing this species. Metal–sulfenate centers are known to play important roles in biology and yet only limited examples are known due to their instability and high reactivity. Herein we report a copper–sulfenate complex characterized in a protein environment, formed at the active site of a cavity mutant of an electron transfer protein, type 1 blue copper azurin. Reaction of hydrogen peroxide with Cu(I)–M121G azurin resulted in a species with strong visible absorptions at 350 and 452 nm and a relatively low electron paramagnetic resonance gz value of 2.169 in comparison with other normal type 2 copper centers. The presence of a side-on copper–sulfenate species is supported by resonance Raman spectroscopy, electrospray mass spectrometry using isotopically enriched hydrogen peroxide, and density functional theory calculations correlated to the experimental data. In contrast, the reaction with Cu(II)–M121G or Zn(II)–M121G azurin under the same conditions did not result in Cys oxidation or copper–sulfenate formation. Structural and computational studies strongly suggest that the secondary coordination sphere noncovalent interactions are critical in stabilizing this highly reactive species, which can further react with oxygen to form a sulfinate and then a sulfonate species, as demonstrated by mass spectrometry. Engineering the electron transfer protein azurin into an active copper enzyme that forms a copper–sulfenate center and demonstrating the importance of noncovalent secondary sphere interactions in stabilizing it constitute important contributions toward the understanding of metal–sulfenate species in biological systems.

Collaboration


Dive into the Julia S. Woertink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter J. Smeets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan G. Hadt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bert Sels

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ga Young Park

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge