Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Sacher is active.

Publication


Featured researches published by Julia Sacher.


Journal of Affective Disorders | 2012

Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder

Julia Sacher; Jane Neumann; Tillmann Fünfstück; Alexandra Soliman; Arno Villringer; Matthias L. Schroeter

BACKGROUND Depression has a lifetime prevalence of up to 20%. Neuroimaging methods have revealed various structural and functional changes that occur in a human brain during a depressive episode. However, we still lack information concerning the extent to which structural and functional changes co-occur in a depressed brain. Furthermore, it is difficult to evaluate from a merely qualitative literature review what regional brain changes in volume and activation are robust across depressed patient samples and consistent across imaging centers. METHODOLOGY AND PRINCIPLE FINDINGS This study is a meta-analysis from 10 selected studies published previously. We applied the statistical anatomical/activation likelihood estimate method (ALE) in a total of 176 depressed patients and 175 controls for the MRI modality and in a total of 102 depressed patients and 94 controls for the PET modality to quantitatively identify those brain regions that show concordant alteration in the midst of a depressive episode across imaging modalities and study sites. We find a convergent change in the limbic-cortical brain circuit in depression compared to controls of both Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) data. The specific changes include lower gray matter volumes in the amygdala, the dorsal frontomedian cortex, and the right paracingulate cortex, as well as increases in glucose metabolism in the right subgenual and pregenual anterior cingulate cortices. CONCLUSIONS/SIGNIFICANCE Our current findings represent an important first step towards a more focused approach to neuroimaging unipolar depression. The regions identified could serve as a specific region-of-interest-for-disease template for both individual in vivo imaging studies and postmortem histopathologic exploration.


Archives of General Psychiatry | 2009

Brain monoamine oxidase a binding in major depressive disorder: Relationship to selective serotonin reuptake inhibitor treatment, recovery and recurrence

Jeffrey H. Meyer; Alan A. Wilson; Sandra Sagrati; Laura Miler; Pablo Rusjan; Peter M. Bloomfield; Michael Clark; Julia Sacher; Aristotle N. Voineskos; Sylvain Houle

CONTEXT Highly significant elevations in regional brain monoamine oxidase A (MAO-A) binding were recently reported during major depressive episodes (MDEs) of major depressive disorder (MDD). The relationship between MAO-A levels and selective serotonin reuptake inhibitor (SSRI) treatment, recovery, and recurrence in MDD is unknown. OBJECTIVES To determine whether brain MAO-A binding changes after SSRI treatment, whether brain MAO-A binding normalizes in subjects with MDD in recovery, and whether there is a relationship between prefrontal and anterior cingulate cortex MAO-A binding in recovery and subsequent recurrence of MDE. DESIGN Case-control study. SETTING Tertiary care psychiatric hospital. PARTICIPANTS Twenty-eight healthy subjects, 16 subjects with an MDE secondary to MDD, and 18 subjects with MDD in recovery underwent carbon 11-labeled harmine positron emission tomography scans. Subjects with MDE were scanned before and after 6 weeks of SSRI treatment. All were otherwise healthy, nonsmoking, and medication free. Subjects with MDD in recovery were followed up for 6 months after MAO-A binding measurement. MAIN OUTCOME MEASURE Monoamine oxidase A V(T), an index of MAO-A density, was measured in the prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, dorsal putamen, ventral striatum, thalamus, anterior temporal cortex, midbrain, and hippocampus. RESULTS Monoamine oxidase A V(T) was significantly elevated in each brain region both during MDE and after SSRI treatment as compared with healthy controls. During recovery, MAO-A V(T) was significantly elevated in each brain region; however, those who went on to recurrence had significantly higher MAO-A V(T) in the prefrontal and anterior cingulate cortex than those who did not. CONCLUSIONS Elevated MAO-A binding after SSRI treatment indicates persistence of a monoamine-lowering process not present in health. This provides a strong conceptual rationale for continuing SSRI treatment during early remission. Greater MAO-A binding in the prefrontal and anterior cingulate cortex in subjects with MDD in recovery and its association with subsequent recurrence argue that deficient monoamine neuromodulation may persist into recovery and contribute to recurrence.


Archives of General Psychiatry | 2010

Elevated Brain Monoamine Oxidase A Binding in the Early Postpartum Period

Julia Sacher; Alan A. Wilson; Sylvain Houle; Pablo Rusjan; Sabrina Hassan; Peter M. Bloomfield; Donna E. Stewart; Jeffrey H. Meyer

CONTEXT The early postpartum period is a time of high risk for a major depressive episode (or postpartum depression), with a prevalence of 13%. During this time, there is a heightened vulnerability for low mood because postpartum blues is common. Severe postpartum blues can herald the onset of postpartum depression. The neurobiological mechanisms to explain postpartum blues and the high risk for the onset of postpartum depression in the first few weeks after delivery are unclear. Estrogen levels drop 100- to 1000-fold during the first 3 to 4 days postpartum, and changes in estrogen levels have an inverse relationship with monoamine oxidase A (MAO-A) density. However, MAO-A levels have never been measured in the early postpartum period. OBJECTIVE To determine whether brain MAO-A binding is elevated in the early postpartum period. DESIGN Case-control study. SETTING Tertiary care academic psychiatric hospital in Toronto, Ontario, Canada. PARTICIPANTS Fifteen healthy women who were 4 to 6 days postpartum and 15 healthy women who had not recently been postpartum underwent carbon 11-labeled harmine positron emission tomography scanning. All women were nonsmoking and medication free. MAIN OUTCOME MEASURE MAO-A total distribution volume, an index of MAO-A density, was measured in prefrontal cortex, anterior cingulate cortex, anterior temporal cortex, thalamus, dorsal putamen, hippocampus, and midbrain. RESULTS MAO-A total distribution volume was significantly elevated (mean, 43%) throughout all analyzed brain regions during the early postpartum period. CONCLUSIONS Elevated MAO-A levels in the early postpartum period can be interpreted as a marker of a monoamine-lowering process that contributes to the mood change of postpartum blues. Rather than a purely psychosocial model, we propose a neurobiological model of estrogen decline, followed by elevated MAO-A binding, low mood, and subsequently a period of high risk for major depressive episodes. Our model has important implications for preventing postpartum depression and for developing therapeutic strategies that target or compensate for elevated MAO-A levels during postpartum blues.


Frontiers in Neuroscience | 2015

Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

Claudia Barth; Arno Villringer; Julia Sacher

Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.


Magnetic Resonance Imaging | 2013

Sexual dimorphism in the human brain: evidence from neuroimaging

Julia Sacher; Jane Neumann; Hadas Okon-Singer; Sarah Gotowiec; Arno Villringer

In recent years, more and more emphasis has been placed on the investigation of sex differences in the human brain. Noninvasive neuroimaging techniques represent an essential tool in the effort to better understand the effects of sex on both brain structure and function. In this review, we provide a comprehensive summary of the findings that were collected in human neuroimaging studies in vivo thus far: we explore sexual dimorphism in the human brain at the level of (1) brain structure, in both gray and white matter, observed by voxel-based morphometry (VBM) and diffusion tensor imaging (DTI), respectively; (2) baseline neural activity, studied using resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET); (3) neurochemistry, visualized by means of neuroreceptor ligand PET; and (4) task-related neural activation, investigated using fMRI. Functional MRI findings from the literature are complemented by our own meta-analysis of fMRI studies on sex-specific differences in human emotional processing. Specifically, we used activation likelihood estimation (ALE) to provide a quantitative approach to mapping the consistency of neural networks involved in emotional processing across studies. The presented evidence for sex-specific differences in neural structure and function highlights the importance of modeling sex as a contributing factor in the analysis of brain-related data.


Neuropsychopharmacology | 2008

Effects of Olanzapine and Ziprasidone on Glucose Tolerance in Healthy Volunteers

Julia Sacher; Nilufar Mossaheb; Christoph Spindelegger; Nikolas Klein; T. Geiss-Granadia; Robert Sauermann; Edith Lackner; Christian Joukhadar; Markus Müller; Siegfried Kasper

Atypical antipsychotics have been linked to a higher risk for glucose intolerance, and consequentially the development of type 2 diabetes mellitus (DM2). We have therefore set out to investigate the acute effects of oral administration of olanzapine and ziprasidone on whole body insulin sensitivity in healthy subjects. Using the standardized hyperinsulinemic euglycemic clamp technique we compared whole body insulin sensitivity of 29 healthy male volunteers after oral intake of either olanzapine 10 mg/day (n=14) or ziprasidone 80 mg/day (n=15) for 10 days. A significant decrease (p<0.001) in whole body insulin sensitivity from 5.7 ml/h/kg (=mean, SM=0.4 ml/h/kg) at baseline to 4.7 ml/h/kg (=mean, SM=0.3 ml/h/kg) after oral intake of olanzapine (10 mg/day) for 10 days was observed. The ziprasidone (80 mg/day) group did not show any significant difference (5.2±0.3 ml/h/kg baseline vs 5.1±0.3 ml/h/kg) after 10 days of oral intake. Our main finding demonstrates that oral administration of olanzapine but not ziprasidone leads to a decrease in whole body insulin sensitivity in response to a hyperinsulinemic euglycemic challenge. Our finding is suggestive that not all atypical antipsychotics cause acute direct effects on glucose disposal and that accurate determination of side effect profile should be performed when choosing an atypical antipsychotic.


Current Drug Targets | 2013

Serum S100B represents a new biomarker for mood disorders.

Matthias L. Schroeter; Julia Sacher; Johann Steiner; Peter Schoenknecht; Karsten Mueller

Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.


Cardiovascular Psychiatry and Neurology | 2010

Mood Disorders Are Glial Disorders: Evidence from In Vivo Studies

Matthias L. Schroeter; Hashim Abdul-Khaliq; Julia Sacher; Johann Steiner; Ingolf E. Blasig; Karsten Mueller

It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.


Translational Psychiatry | 2012

Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: A combined MRI, serum marker and gene expression study

Karsten Mueller; Julia Sacher; Katrin Arélin; Stefan Holiga; Jürgen Kratzsch; Arno Villringer; Matthias L. Schroeter

There is growing evidence that obesity represents a risk for enhanced gray matter (GM) density changes comparable to those demonstrated for mild cognitive impairment in the elderly. However, it is not clear what mechanisms underlie this apparent alteration in brain structure of overweight subjects and to what extent these changes can already occur in the adolescent human brain. In the present volumetric magnetic resonance imaging study, we investigated GM changes and serum levels of neuron-specific enolase (NSE), a marker for neuronal injury, in a set of overweight/obese subjects and controls. We report a negative correlation for overweight and obese subjects between serum NSE and GM density in hippocampal and cerebellar regions. To validate our neuroimaging findings, we complement these data with NSE gene expression information obtained from the Allen Brain atlas. GM density changes were localized in brain areas that mediate cognitive function—the hippocampus associated with memory performance, and the cognitive cerebellum (lateral posterior lobes) associated with executive, spatial and linguistic processing. The data of our present study highlight the importance of extending current research on cognitive function and brain plasticity in the elderly in the context of obesity to young adult subjects and include serum biomarkers to validate imaging findings generally.


Current Biology | 2014

Serotonergic Modulation of Intrinsic Functional Connectivity

Alexander Schaefer; Inga Burmann; Ralf Regenthal; Katrin Arélin; Claudia Barth; André Pampel; Arno Villringer; Daniel S. Margulies; Julia Sacher

Serotonin functions as an essential neuromodulator that serves a multitude of roles, most prominently balancing mood. Serotonergic challenge has been observed to reduce intrinsic functional connectivity in brain regions implicated in mood regulation. However, the full scope of serotonergic action on functional connectivity in the human brain has not been explored. Here, we show evidence that a single dose of a serotonin reuptake inhibitor dramatically alters functional connectivity throughout the whole brain in healthy subjects (n = 22). Our network-centrality analysis reveals a widespread decrease in connectivity in most cortical and subcortical areas. In the cerebellum and thalamus, however, we find localized increases. These rapid and brain-encompassing connectivity changes linked to acute serotonin transporter blockade suggest a key role for the serotonin transporter in the modulation of the functional macroscale connectome.

Collaboration


Dive into the Julia Sacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan A. Wilson

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Pablo Rusjan

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilufar Mossaheb

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nikolas Klein

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Siegfried Kasper

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge