Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Schmale is active.

Publication


Featured researches published by Julia Schmale.


Journal of Geophysical Research | 2017

Light‐absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau

Yulan Zhang; Shichang Kang; Zhiyuan Cong; Julia Schmale; Michael Sprenger; Chaoliu Li; Wei Yang; Tanguang Gao; Mika Sillanpää; Xiaofei Li; Yajun Liu; Pengfei Chen; X. Y. Zhang

Light-absorbing impurities (LAIs) in snow of the southeastern Tibetan Plateau (TP) and their climatic impacts are of interest not only because this region borders areas affected by the South Asian atmospheric brown clouds but also because the seasonal snow and glacier melt from this region form important headwaters of large rivers. In this study, we collected surface snow and snowpit samples from four glaciers in the southeastern TP in June 2015 to investigate the comprehensive observational data set of LAIs. Results showed that the LAI concentrations were much higher in the aged snow and granular ice than in the fresh snow and snowpits due to postdepositional processes. Impurity concentrations fluctuated across snowpits, with maximum LAI concentrations frequently occurring toward the bottom of snowpits. Based on the SNow ICe Aerosol Radiative model, the albedo simulation indicated that black carbon and dust account for approximately 20% of the albedo reduction relative to clean snow. The radiative forcing caused by black carbon and dust deposition on the glaciers were between 1.0-141 W m(-2) and 1.5-120 W m(-2), respectively. Black carbon (BC) played a larger role in albedo reduction and radiative forcing than dust in the study area, enhancing approximately 15% of glacier melt. Analysis based on the Fire INventory from NCAR indicated that nonbiomass-burning sources of BC played an important role in the total BC deposition, especially during the monsoon season. This study suggests that eliminating anthropogenic BC could mitigate glacier melt in the future of the southeastern TP. Plain Language Summary In this study, we focused on light-absorbing impurities (LAIs), including black carbon, organic carbon, and mineral dust in glacial surface snow from southeaster Tibetan glaciers. This study showed the concentrations of LAIs, and estimated their impact on albedo reduction. Furthermore, we discussed the potential source of impurities and their impact to the study area. These results provide scientific basis for regional mitigation efforts to reduce black carbon.


Scientific Reports | 2017

Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

Julia Schmale; Mark G. Flanner; Shichang Kang; Michael Sprenger; Qianggong Zhang; Junming Guo; Yang Li; Margit Schwikowski; Daniel Farinotti

Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a−1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.


Bulletin of the American Meteorological Society | 2017

The global aerosol synthesis and science project (GASSP): Measurements and modeling to reduce uncertainty

C. L. Reddington; Kenneth S. Carslaw; P. Stier; N. A. J. Schutgens; Hugh Coe; Dantong Liu; J. D. Allan; J. Browse; K. J. Pringle; L. A. Lee; Masaru Yoshioka; Jill S. Johnson; Leighton A. Regayre; D. V. Spracklen; G. W. Mann; Antony D. Clarke; M. Hermann; S. Henning; Heike Wex; Thomas Kristensen; W. R. Leaitch; Ulrich Pöschl; D. Rose; Meinrat O. Andreae; Julia Schmale; Yutaka Kondo; N. Oshima; Joshua P. Schwarz; Athanasios Nenes; Bruce E. Anderson

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in-situ measurements of the particle size distribution, number concentration and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, an extensive global dataset of aerosol in-situ microphysical and chemical measurements, and new ways to assess the uncertainty associated with comparing sparse point measurements with low resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modellers and non-specialist users. Available measurements are extensive, but they biased to polluted regions of the northern hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model-data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.


Scientific Data | 2018

Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

Julia Schmale; S. Henning; Bas Henzing; Helmi Keskinen; K. Sellegri; Jurgita Ovadnevaite; A. Bougiatioti; N. Kalivitis; Iasonas Stavroulas; Anne Jefferson; Minsu Park; P. Schlag; Adam Kristensson; Yoko Iwamoto; K. J. Pringle; C. L. Reddington; Pasi Aalto; Mikko Äijälä; Urs Baltensperger; Jakub Bialek; Wolfram Birmili; Nicolas Bukowiecki; Mikael Ehn; A. M. Fjaeraa; Markus Fiebig; Göran Frank; Roman Fröhlich; Arnoud Frumau; Masaki Furuya; E. Hammer

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.


Science of The Total Environment | 2019

Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties

Yulan Zhang; Shichang Kang; Tanguang Gao; Julia Schmale; Yajun Liu; Wei Zhang; Junming Guo; Wentao Du; Zhaofu Hu; Xiaoqing Cui; Mika Sillanpää

Dissolved organic carbon (DOC) in snow plays an important role in river ecosystems that are fed by snowmelt water. However, limited knowledge is available on the DOC content in snow of the Chinese Altai Mountains in Central Asia. In this study, DOC in the snow cover of the Kayiertesi river basin, southern slope of Altai Mountains, was investigated during November 2016 to April 2017. The results showed that average concentrations of DOC in the surface snow cover (1.01 ± 0.52 mg L-1) were only a little higher than those in glaciers of the Tibetan Plateau, European Alps, and Alaska, but much higher than in Greenland Ice Sheet. Depth variations of DOC concentrations from snowpack profiles indicated higher values in the surface layer. During the observation period, scavenging efficiency for DOC in snow cover is estimated to be 0.15 ± 0.10, suggesting that DOC in snow can be affected more by the meltwater during ablation season than during accumulation season. The average mass absorption cross section at 365 nm and the absorption Ångström exponent of DOC were 0.45 ± 0.35 m2 g-1 and 2.59 ± 1.03, respectively, with higher values in March and April 2017. Fraction of radiative forcing caused by DOC relative to black carbon accounted for about 10.5%, implying DOC is a non-ignorable light-absorber of solar radiation in snow of the Altai regions. Backward trajectories analysis and aerosol vertical distribution images from satellites showed that DOC in the snow of the Altai Mountains was mainly influenced by air masses from Central Asia, Western Siberia, the Middle East, and some even from Europe. Biomass burning and organic carbon mixed with mineral dust contributed significantly to the DOC concentration. This study highlights the effects of DOC in the snow cover for radiative forcing and the need to study carbon cycling for evaluation of quality of the downstreams ecosystems.


Archive | 2016

Building Interfaces That Work: A Multi-stakeholder Approach to Air Pollution and Climate Change Mitigation

Julia Schmale; Erika von Schneidemesser; Ilan Chabay; Achim Maas; Mark G. Lawrence

Air pollution and climate change are two major environmental problems. These issues are not only inextricably linked with regard to their effects and mitigation options but also through their causes that include human behavior, infrastructures, technology, and other factors. This implies that societal transformation to a sustainable human-atmosphere relationship will require the involvement of the many facets of society for discussions of normative and value-related issues for the codesign of salient and legitimate solutions. We describe the ClimPol project and a specific subproject Mobility and Climate, which create integrated and long-lasting strategies by applying a transdisciplinary approach together with the framework of coupled-human-atmosphere-systems-thinking.


Nature | 2014

Air pollution: Clean up our skies

Julia Schmale; Drew T. Shindell; Erika von Schneidemesser; Ilan Chabay; Mark G. Lawrence


Sustainability | 2015

An Integrated Assessment Method for Sustainable Transport System Planning in a Middle Sized German City

Julia Schmale; Erika von Schneidemesser; Axel Dörrie


Atmospheric Environment | 2014

New Directions: Support for integrated decision-making in air and climate policies – Development of a metrics-based information portal☆

Julia Schmale


Current Opinion in Environmental Sustainability | 2016

Sustainable policy—key considerations for air quality and climate change

Megan Melamed; Julia Schmale; Erika von Schneidemesser

Collaboration


Dive into the Julia Schmale's collaboration.

Top Co-Authors

Avatar

Erika von Schneidemesser

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shichang Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yajun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yulan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmi Keskinen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge