Julia Schumacher
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Schumacher.
Eukaryotic Cell | 2008
Julia Schumacher; Inigo F. de Larrinoa; Bettina Tudzynski
ABSTRACT Recently, we showed that the α subunit BCG1 of a heterotrimeric G protein is an upstream activator of the Ca2+/calmodulin-dependent phosphatase calcineurin in the gray mold fungus Botrytis cinerea. To identify the transcription factor acting downstream of BCG1 and calcineurin, we cloned the gene encoding the B. cinerea homologue of CRZ1 (“CRaZy,” calcineurin-responsive zinc finger transcription factor), the mediator of calcineurin function in yeast. BcCRZ1 is able to partially complement the corresponding Saccharomyces cerevisiae mutant, and the subcellular localization of the green fluorescent protein-BcCRZ1 fusion product in yeast cells depends on the calcium level and calcineurin activity. Bccrz1 deletion mutants are not able to grow on minimal media and grow slowly on media containing plant extracts. Hyphal morphology, conidiation, and sclerotium formation are impaired. The cell wall and membrane integrity, stress response (extreme pH, H2O2, Ca2+, Li+), and ability of the hyphae to penetrate the intact plant surface are affected in the mutants. However, BcCRZ1 is almost dispensable for the conidium-derived infection of bean plants. The addition of Mg2+ restores the growth rate, conidiation, and penetration and improves the cell wall integrity but has no impact on sclerotium formation or hypersensitivity to Ca2+ and H2O2. The expression of a set of recently identified BCG1- and calcineurin-dependent genes is also affected in ΔBccrz1 mutants, confirming that this transcription factor acts downstream of calcineurin in B. cinerea. Since the Bccrz1 mutants still respond to calcineurin inhibitors, we conclude that BcCRZ1 is not the only target of calcineurin.
Molecular Plant Pathology | 2011
Bérengère Dalmais; Julia Schumacher; Javier Moraga; Pascal Le Pêcheur; Bettina Tudzynski; Isidro G. Collado; Muriel Viaud
The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.
PLOS ONE | 2013
Paulo Canessa; Julia Schumacher; Montserrat A. Hevia; Paul Tudzynski; Luis F. Larrondo
Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individuals physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970′s reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development – and possibly also connected with virulence – we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
Molecular Microbiology | 2008
Julia Schumacher; Muriel Viaud; Adeline Simon; Bettina Tudzynski
The Gα subunit BCG1 is essential for pathogenicity of the grey mould fungus Botrytis cinerea. Several processes such as the transition from primary infection to secondary invasive growth and the production of the phytotoxin botrydial are regulated by BCG1 via a cAMP‐independent pathway. Our recent finding that the botrydial biosynthesis genes belong to the group of Ca2+/calcineurin‐dependent genes suggested for the first time a connection between this Gα subunit and the calcineurin signalling pathway. To investigate whether this co‐regulation of genes by BCG1 and calcineurin is a common feature, a cDNA macroarray approach was used to compare the gene expression pattern of the wild‐type and the Δbcg1 mutant, non‐treated or treated with the calcineurin inhibitor cyclosporin A. We identified three sets of genes whose expression was regulated either by both BCG1 and calcineurin, or only by one of them. Among the BCG1/calcineurin‐co‐regulated genes, we found a new gene cluster coding for a yet unknown polyketide secondary metabolite. Furthermore, we show for the first time in a phytopathogenic fungus that the phospholipase C (BcPLC1) is a component of the BCG1‐ and calcineurin‐dependent signalling pathway as several BCG1‐ and calcineurin‐dependent genes were downregulated in bcplc1 knock‐down mutants.
PLOS Genetics | 2014
Julia Schumacher; Adeline Simon; Kim C. Cohrs; Muriel Viaud; Paul Tudzynski
Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection.
Molecular Plant-microbe Interactions | 2008
Julia Schumacher; Leonie Kokkelink; Christina Huesmann; Daniel Jiménez-Teja; Isidro G. Collado; Radwan M. Barakat; Paul Tudzynski; Bettina Tudzynski
In Botrytis cinerea, some components of the cAMP-dependent pathway, such as alpha subunits of heterotrimeric G proteins and the adenylate cyclase BAC, have been characterized and their impact on growth, conidiation, germination, and virulence has been demonstrated. Here, we describe the functions of more components of the cAMP cascade: the catalytic subunits BcPKA1 and BcPKA2 and the regulatory subunit BcPKAR of the cAMP-dependent protein kinase (PKA). Although Deltabcpka2 mutants showed no obvious phenotypes, growth and virulence were severely affected by deletion of both bcpka1 and bcpkaR. Similar to Deltabac, lesion development of Deltabcpka1 and DeltabcpkaR was slower than in controls and soft rot of leaves never occurred. In contrast to Deltabac, Deltabcpka1 and DeltabcpkaR mutants sporulated in planta, and growth rate, conidiation, and conidial germination were not impaired, indicating PKA-independent functions of cAMP. Unexpectedly, Deltabcpka1 and DeltabcpkaR showed identical phenotypes, suggesting the total loss of PKA activity in both mutants. The deletion of bcras2 encoding the fungal-specific Ras GTPase resulted in significantly delayed germination and decreased growth rates. Both effects could be partially restored by exogenous cAMP, suggesting that BcRAS2 activates the adenylate cyclase in addition to the Galpha subunits BCG1 and BCG3, thus influencing cAMP-dependent signal transduction.
PLOS ONE | 2012
Julia Schumacher; Jean-Marc Pradier; Adeline Simon; Stefanie Traeger; Javier Moraga; Isidro G. Collado; Muriel Viaud; Bettina Tudzynski
Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.
PLOS ONE | 2013
Julia Schumacher; Angelique Gautier; Guillaume Morgant; Lena Studt; Paul-Henri Ducrot; Pascal Le Pêcheur; Saad Azeddine; Sabine Fillinger; Pierre Leroux; Bettina Tudzynski; Muriel Viaud
The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus.
Molecular Plant-microbe Interactions | 2015
Julia Schumacher; Adeline Simon; Kim C. Cohrs; Stefanie Traeger; Antoine Porquier; Bérengère Dalmais; Muriel Viaud; Bettina Tudzynski
Botrytis cinerea, the gray mold fungus, is an important plant pathogen. Field populations are characterized by variability with regard to morphology, the mode of reproduction (conidiation or sclerotia formation), the spectrum of secondary metabolites (SM), and virulence. Natural variation in bcvel1 encoding the ortholog of Aspergillus nidulans VeA, a member of the VELVET complex, was previously shown to affect light-dependent differentiation, the formation of oxalic acid (OA), and virulence. To gain broader insight into the B. cinerea VELVET complex, an ortholog of A. nidulans LaeA, BcLAE1, a putative interaction partner of BcVEL1, was studied. BcVEL1 but not its truncated versions interacts with BcLAE1 and BcVEL2 (VelB ortholog). In accordance with the expected common as well as specific functions of BcVEL1 and BcLAE1, the deletions of both genes result in similar though not identical phenotypes. Both mutants lost the ability to produce OA, to colonize the host tissue, and to form sclerotia. However, mutants differ with regard to aerial hyphae and conidia formation. Genome-wide expression analyses revealed that BcVEL1 and BcLAE1 have common and distinct target genes. Some of the genes that are underexpressed in both mutants, e.g., those encoding SM-related enzymes, proteases, and carbohydrate-active enzymes, may account for their reduced virulence.
Molecular Microbiology | 2016
Julia Schumacher
Botrytis cinerea is the causal agent of gray mold disease in various plant species and produces grayish macroconidia and/or black sclerotia at the end of the infection cycle. It has been suggested that the pigmentation is due to the accumulation of 1,8‐dihydroxynaphthalene (DHN) melanin. To unravel its basis and regulation, the putative melanogenic and regulatory genes were identified and functionally characterized. Unlike other DHN melanin‐producing fungi, B. cinerea and other Leotiomycetes contain two key enzyme (PKS)‐encoding enzymes. Bcpks12 and bcpks13 are developmentally regulated and are required for melanogenesis in sclerotia and conidia respectively. BcYGH1 converts the BcPKS13 product and contributes thereby to conidial melanogenesis. In contrast, enzymes acting downstream in conversion of the PKS products (BcBRN2, BcSCD1 and BcBRN1) are required for both, sclerotial and conidial melanogenesis, suggesting that DHN melanogenesis in B. cinerea follows a non‐linear pathway that is rather unusual for secondary metabolic pathways. Regulation of the melanogenic genes involves three pathway‐specific transcription factors (TFs) that are clustered with bcpks12 or bcpks13 and other developmental regulators such as light‐responsive TFs. Melanogenic genes are dispensable in vegetative mycelia for proper growth and virulence. However, DHN melanin is considered to contribute to the longevity of the reproduction structures.