Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Stähler is active.

Publication


Featured researches published by Julia Stähler.


Nature Communications | 2012

Ultrafast changes in lattice symmetry probed by coherent phonons.

Simon Wall; Daniel Wegkamp; Laura Foglia; Kannatassen Appavoo; Joyeeta Nag; Richard F. Haglund; Julia Stähler; Martin Wolf

The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. Here we show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO(2) and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.


Physical Review Letters | 2014

Instantaneous Band Gap Collapse in Photoexcited Monoclinic VO2 due to Photocarrier Doping

Daniel Wegkamp; Marc Herzog; Lede Xian; Matteo Gatti; Pierluigi Cudazzo; Christina McGahan; Robert E. Marvel; Richard F. Haglund; Angel Rubio; Martin Wolf; Julia Stähler

Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.


Journal of Chemical Physics | 2013

Large work function reduction by adsorption of a molecule with a negative electron affinity: Pyridine on ZnO(10-10)

Oliver T. Hofmann; Jan-Christoph Deinert; Yong Xu; Patrick Rinke; Julia Stähler; Martin Wolf; Matthias Scheffler

Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(1010), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.


Chemical Society Reviews | 2008

A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces

Julia Stähler; Uwe Bovensiepen; Michael Meyer; Martin Wolf

Excess electrons in polar media, such as water or ice, are screened by reorientation of the surrounding molecular dipoles. This process of electron solvation is of vital importance for various fields of physical chemistry and biology as, for instance, in electrochemistry or photosynthesis. Generation of such excess electrons in bulk water involves either photoionization of solvent molecules or doping with e.g. alkali atoms, involving possibly perturbing interactions of the system with the parent-cation. Such effects are avoided when using a surface science approach to electron solvation: in the case of polar adsorbate layers on metal surfaces, the substrate acts as an electron source from where photoexcited carriers are injected into the adlayer. Besides the investigation of electron solvation at such interfaces, this approach allows for the investigation of heterogeneous electron transfer, as the excited solvated electron population continuously decays back to the metal substrate. In this manner, electron transfer and solvation processes are intimately connected at any polar adsorbate-metal interface. In this tutorial review, we discuss recent experiments on the ultrafast dynamics of photoinduced electron transfer and solvation processes at amorphous ice-metal interfaces. Femtosecond time-resolved two-photon photoelectron spectroscopy is employed as a direct probe of the electron dynamics, which enables the analysis of all elementary processes: the charge injection across the interface, the subsequent electron localization and solvation, and the dynamics of electron transfer back to the substrate. Using surface science techniques to grow and characterize various well-defined ice structures, we gain detailed insight into the correlation between adsorbate structure and electron solvation dynamics, the location (bulk versus surface) of the solvation site, and the role of the electronic structure of the underlying metal substrate on the electron transfer rate.


Physical Review Letters | 2017

Ultrafast electronic band gap control in an excitonic insulator

Selene Mor; Marc Herzog; Denis Golež; Philipp Werner; Martin Eckstein; Naoyuki Katayama; Minoru Nohara; H. Takagi; T. Mizokawa; Claude Monney; Julia Stähler

We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta_{2}NiSe_{5} investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F_{C}=0.2  mJ cm^{-2}, the band gap narrows transiently, while it is enhanced above F_{C}. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta_{2}NiSe_{5}, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta_{2}NiSe_{5} with light on the femtosecond time scale.


Faraday Discussions | 2009

Reactivity of water–electron complexes on crystalline ice surfaces

Mathieu Bertin; Michael Meyer; Julia Stähler; Cornelius Gahl; Martin Wolf; Uwe Bovensiepen

The interactions between long-living electrons trapped in defects of crystalline D2O and electronegative molecules have been investigated using two-photon photoemission spectroscopy. When covered by a Xe adlayer, the spectroscopic signature of the trapped electrons vanishes, which provides evidence that the trapping sites are located on the surface of the crystalline ice. The reactive character of these surface-trapped electrons with molecules has been studied. In the case of CFCl3 adsorbed on top of the ice, we show that the trapped electrons induce the dissociation of the molecules, via a dissociative electron attachment process, resulting in *CFCl2 and Cl(-) formation. The latter species are responsible for the observed increase of the work function and presumably for the deactivation of the surface trapping sites with respect to subsequent light-induced population by excited electrons. This process is thought to be of high efficiency since it is observed for a very low CFCl3 coverage of only approximately 0.004 monolayer (ML). In the case of exposure of the crystalline ice to a partial pressure of gaseous O2, the deactivation of the trapping site has also been observed. The mechanism is thought to involve the formation of the O2*(-) transient anion by electron attachment, followed by its reactive interaction with the water molecules of the defect. In both cases, the mechanisms are triggered by negative ion resonances which are known from experiments using a primary electron beam to be effective for isolated molecules for ballistic electrons of approximately 0 eV. We thereby demonstrate a similarity between the processes induced by these primary, very low kinetic-energy electrons and by the long-living surface electrons on the crystalline ice surface. These results suggest that the photoexcited trapped electrons can play an important role in the heterogeneous chemical processes on condensed water surfaces and could be relevant in the polar stratosphere chemistry.


Journal of the American Chemical Society | 2008

Ultrafast electron transfer dynamics at NH3/Cu(111) interfaces: determination of the transient tunneling barrier.

Julia Stähler; Michael Meyer; Daniela O. Kusmierek; Uwe Bovensiepen; Martin Wolf

Electron transfer (ET) dynamics at molecule-metal interfaces plays a key role in various fields as surface photochemistry or the development of molecular electronic devices. The bare transfer process is often described in terms of tunneling through an interfacial barrier that depends on the distance of the excited electron to the metal substrate. However, a quantitative characterization of such potential barriers is still lacking. In the present time-resolved two-photon photoemission (2PPE) study of amorphous NH 3 layers on Cu(111) we show that photoinjection of electrons is followed by charge solvation leading to the formation of a transient potential barrier at the interface that determines the ET to the substrate. We demonstrate that the electrons are localized at the ammonia-vacuum interface and that the ET rate depends exponentially on the NH 3 layer thickness with inverse range parameters beta between 1.8 and 2.7 nm (-1). Systematic analysis of this time-resolved and layer thickness-dependent data finally enables the determination of the temporal evolution of the interfacial potential barrier using a simple model description. We find that the tunneling barrier forms after tau E = 180 fs and subsequently rises more than three times faster than the binding energy gain of the solvated electrons.


Physical Chemistry Chemical Physics | 2008

Determination of the electron’s solvation site on D2O/Cu(111) using Xe overlayers and femtosecond photoelectron spectroscopy

Michael Meyer; Julia Stähler; Daniela O. Kusmierek; Martin Wolf; Uwe Bovensiepen

We investigate the binding site of solvated electrons in amorphous D(2)O clusters and D(2)O wetting layers adsorbed on Cu(111) by means of two-photon photoelectron (2PPE) spectroscopy. On the basis of different interactions of bulk- or surface-bound solvated electrons with rare gas atoms, titration experiments using Xe overlayers reveal the location of the electron solvation sites. In the case of flat clusters with a height of 2-4 bilayers adsorbed on Cu(111), solvated electrons are found to reside at the ice-vacuum interface, whereas a bulk character is found for solvated electrons in wetting layers. Furthermore, time-resolved experiments are performed to determine the origin of the transition between these different solvation sites with increasing D(2)O coverage. We employ an empirical model calculation to analyse the rate of electron transfer back to the substrate and the energetic stabilization of the solvated electrons, which allows further insight into the binding site for clusters. We find that the solvated electrons reside at the edges of the clusters. Therefore, we attribute the transition from surface- to bulk-solvation to the coalescence of the clusters to a closed ice film occurring at a nominal coverage of 2-3 BL, while the distance of the binding sites to the metal-ice interface is maintained.


Journal of the American Chemical Society | 2015

Real-Time Measurement of the Vertical Binding Energy during the Birth of a Solvated Electron

Julia Stähler; Jan-Christoph Deinert; Daniel Wegkamp; Sebastian Hagen; Martin Wolf

Using femtosecond time-resolved two-photon photoelectron spectroscopy, we determine (i) the vertical binding energy (VBE = 0.8 eV) of electrons in the conduction band in supported amorphous solid water (ASW) layers, (ii) the time scale of ultrafast trapping at pre-existing sites (22 fs), and (iii) the initial VBE (1.4 eV) of solvated electrons before significant molecular reorganization sets in. Our results suggest that the excess electron dynamics prior to solvation are representative for bulk ASW.


Physical Review B | 2015

Local aspects of hydrogen-induced metallization of the ZnO(10-10) surface

Jan-Christoph Deinert; Oliver T. Hofmann; Michael Meyer; Patrick Rinke; Julia Stähler

This study combines surface-sensitive photoemission experiments with density functional theory to give a microscopic description of H-adsorption-induced modifications of the ZnO(1010) surface electronic structure. We find a complex adsorption behavior caused by a strong coverage dependence of the H adsorption energies: Initially, O-H bond formation is energetically favorable and H acting as an electron donor leads to the formation of a charge accumulation layer and to surface metallization. The increase of the number of O-H bonds leads to a reversal in adsorption energies such that Zn-H bonds become favored at sites close to existing O-H bonds, which results in a gradual extenuation of the metallization. The corresponding surface potential changes are localized within a few nanometers both laterally and normal to the surface. This localized character is experimentally corroborated by using subsurface bound excitons at the ZnO(1010) surface as a local probe. The pronounced and comparably localized effect of small amounts of hydrogen at this surface strongly suggests metallic character of ZnO surfaces under technologically relevant conditions and may, thus, be of high importance for energy level alignment at ZnO-based junctions in general.

Collaboration


Dive into the Julia Stähler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Bovensiepen

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Meyer

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelius Gahl

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge