Júlia Tandori
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Júlia Tandori.
Photosynthesis Research | 2001
Júlia Tandori; Éva Hideg; László Nagy; Péter Maróti; Imre Vass
Inhibition of electron transport and damage to the protein subunits by visible light has been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides. Illumination by 1100 μEm−2 s−1 light induced only a slight effect in wild type, carotenoid containing 2.4.1. reaction centers. In contrast, illumination of reaction centers isolated from the carotenoidless R26 strain resulted in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm arising from the P+QB− → PQB recombination. In addition to this effect, the L, M and H protein subunits of the R26 reaction center were damaged as shown by their loss on Coomassie stained gels, which was however not accompanied by specific degradation products. Both the loss of photochemical activity and of protein subunits were suppressed in the absence of oxygen. By applying EPR spin trapping with 2,2,6,6-tetramethylpiperidine we could detect light-induced generation of singlet oxygen in the R26, but not in the 2.4.1. reaction centers. Moreover, artificial generation of singlet oxygen, also led to the loss of the L, M and H subunits. Our results provide evidence for the common hypothesis that strong illumination by visible light damages the carotenoidless reaction center via formation of singlet oxygen. This mechanism most likely proceeds through the interaction of the triplet state of reaction center chlorophyll with the ground state triplet oxygen in a similar way as occurs in Photosystem II.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Júlia Tandori; Péter Maróti; Emil Alexov; Pierre Sebban; Laura Baciou
Photosynthetic bacterial reaction centers convert light excitation into chemical free energy. The initial electron transfer leads to the consecutive semireductions of the primary (QA) and secondary (QB) quinone acceptors. The Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} and Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document} formations induce proton uptake from the bulk. Their magnitudes (H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} and H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document}, respectively) probe the electrostatic interactions within the complex. The pH dependence of H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} and H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document} were studied in five single mutants modified at the L209 site (L209P→F,Y,W,E,T). This residue is situated at the border of a continuous chain of water molecules connecting QB to the bulk. In the wild type (WT), a proton uptake band is present at high pH in the H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} and H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document} curves and is commonly attributed to a cluster of acidic groups situated nearby QB. In the H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} curves of the L209 variants, this band is systematically absent but remains in the H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document} curves. Moreover, notable increase of H+/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{B}^{-}}}\end{equation*}\end{document} is observed in the L209 mutants at neutral pH as compared with the WT. The large effects observed in all L209 mutants are not associated with significant structural changes (Kuglstatter, A., Ermler, U., Michel, H., Baciou, L. & Fritzsch, G. Biochemistry (2001) 40, 4253–4260). Our data suggest that, in the L209 mutants, the QB cluster does not respond to the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{A}^{-}}}\end{equation*}\end{document} formation as observed in the WT. We propose that, in the mutants, removal of the rigid proline L209 breaks a necessary hydrogen bonding connection between the quinone sites. These findings suggest an important role for structural rigidity in ensuring a functional interaction between quinone binding sites.
Biochimica et Biophysica Acta | 2009
Anne Pilotelle-Bunner; Patricia Beaunier; Júlia Tandori; Péter Maróti; Ronald J. Clarke; Pierre Sebban
Three different cholesterol derivatives and phloretin, known to affect the local electric field in phospholipid membranes, have been introduced into Rhodobacter sphaeroides reaction centre-containing phospholipid liposomes. We show that cholesterol and 6-ketocholestanol significantly slow down the interquinone first electron transfer (approximately 10 times), whereas phloretin and 5-cholesten-3beta-ol-7-one leave the kinetics essentially unchanged. Interestingly, the two former compounds have been shown to increase the dipole potential, whereas the two latter decrease it. We also measured in isolated RCs the rates of the electron and proton transfers at the first flash. Over the pH range 7-10.5 both reactions display biphasic behaviors with nearly superimposable rates and amplitudes, suggesting that the gating process limiting the first electron transfer is indeed the coupled proton entry. We therefore interpret the effects of cholesterol and 6-ketocholestanol as due to dipole concentration producing an increased free energy barrier for protons to enter the protein perpendicular to the membrane. We also report for the first time in R. sphaeroides RCs, at room temperature, a biphasicity of the P(+)Q(A)(-) charge recombination, induced by the presence of cholesterol derivatives in proteoliposomes. We propose that these molecules decrease the equilibration time between two RC conformations, therefore revealing their presence.
Photochemistry and Photobiology | 2002
Zsolt Tokaji; Júlia Tandori; Péter Maróti
Abstract Irreversible loss of the photochemical activity and damage of the pigments (bacteriochlorophyll [Bchl] monomer, Bchl dimer [P] and bacteriopheophytin) by combined treatment with intense and continuous visible light and elevated temperature have been studied in a deoxygenated solution of reaction center (RC) protein from the nonsulfur purple photosynthetic bacterium Rhodobacter sphaeroides. Both the fraction of RC in the charge-separated redox state (P+Q−, where Q is a quinone electron acceptor) and the degradation of the pigments showed saturation as a function of increasing light intensity up to 400 mW cm−2 (488/515 nm) or 1100 μE m−2 s−1 (white light). The thermal denaturation curves of the RC in the P+Q− redox state demonstrated broadening and 10–20°C shift to lower temperature (after 30–90 min heat treatment) compared with those in the PQ redox state. Similar but less striking behavior was seen for RC of other redox states (P+Q and PQ−) generated either by light or by electrochemical treatment in the dark. These experiments suggest that it is not the intense light per se but the changes in the redox state of the protein that are responsible for the increased sensitivity to photo- and heat damage. The RC with a charge pair (P+Q−) is more vulnerable to elevated temperature than the RC with (P+Q or PQ−) or without (PQ) a single charge. To reveal both the thermodynamic and kinetic aspects of the denaturation, a simple three-state model of coupled reversible thermal and irreversible kinetic transitions is presented. These effects may have relevance to the heat stability of other redox proteins in bioenergetics.
Functional Plant Biology | 2002
Andrea Halmschlager; Júlia Tandori; Massimo Trotta; László Rinyu; Ilona Pfeiffer; László Nagy
A quantitative model describing the amplitude of semiquinone absorption in photosynthetic reaction centres after successive flashes in the presence of increasing inhibitor concentration is presented. By using relatively simple algebra, the semiquinone signals can be calculated and fitted to the oscillation pattern by optimizing only two parameters; the electron and quinone equilibrium constants, Ke and Kq, respectively. In this work we expand our earlier model [Tandori et al. (1991) Photosynthetica 25, 159-166] by introducing the inhibitor equilibrium constant, Ki, describing the best fit of the model to the measured oscillation pattern. We found that there are characteristic parameters of the measured and normalized signal, and of those calculated from the mathematical model, which fit well with competitive Michaelis-Menten kinetics.
Photochemistry and Photobiology | 2005
Júlia Tandori; Zsolt Tokaji; Katalin Misurda; Péter Maróti
Abstract The rate constants of thermal (irreversible) damage of bacteriochlorin pigments (bacteriochlorophyll monomer [B], bacteriochlorophyll dimer [P] and bacteriopheophytine [H]) in reaction center [RC] protein from the photosynthetic bacterium Rhodobacter sphaeroides were studied in the dark and during intense (400 mW·cm−2) laser light excitation (wavelengths 488 and 515 nm) under deoxygenated conditions. While the kinetics of degradation of P and B were monoexponential, the decay kinetics of H were overlapped by an initial lag phase at elevated (>40°C) temperature. This is explained by removal of the central metal ion from the bacteriochlorophylls as part of their degradation processes. At all temperatures, the rates of damage were very similar for all bacteriochlorin pigments and were larger in the light than in the dark. The logarithm of the rate constant of pigment degradation and loss of photochemistry as a function of reciprocal (absolute) temperature (Arrhenius/Eyring plot) showed single phase in the light and double phases in the dark. Below 20°C, the rate of pigment degradation in the RC decreased so dramatically in the dark that it became limited by the natural degradation process of bacteriochlorophyll measured in solution. The function of loss of photochemistry in the dark was also biphasic and had a break point at 40°C. The damage in the dark required high enthalpy change (ΔH‡ = 64 kcal/mol for P and ΔH‡ = 60 kcal/mol for B) and entropy increase (T·ΔS‡ = 38 kcal/mol for P and T·ΔS‡ = 34 kcal/mol for B at T = 300 K), whereas significantly smaller enthalpy change (ΔH‡ = 21 kcal/mol for P and B and ΔH‡ = 13 kcal/mol for H) and practically no (T·ΔS‡ = −1 kcal/mol for P and B at T = 300 K) or small (T·ΔS‡ = −9 kcal/mol for H at T = 300 K) entropy change was needed in the light. The thermodynamic parameters of activation reveal major steps common in the degradation of all bacteriochlorin pigments: ring opening reactions at C5 or C20 meso-bridges (or both) and breaking/removal of the phytyl chain. Their contribution in the degradation is probably reflected in the observed enthalpy/entropy compensation at an almost constant (ΔG‡ = 22–26 kcal/mol at T = 300 K) free energy change of activation.
Photochemistry and Photobiology | 2002
Júlia Tandori; Jaroslava Miksovska; Marielle Valerio-Lepiniec; Marianne Schiffer; Péter Maróti; Deborah K. Hanson; Pierre Sebban
Abstract Flash-induced absorbance spectroscopy was used to analyze the proton uptake and electron transfer properties of photosynthetic reaction centers (RC) of Rhodobacter capsulatus that have been genetically modified near the primary quinone electron acceptor (QA). M246Ala and M247Ala, which are symmetry-related to the positions of two acidic groups, L212Glu and L213Asp, in the secondary quinone electron acceptor (QB) protein environment, have been mutated to Glu and Asp, respectively. The pH dependence of the stoichiometry of proton uptake upon formation of the P+QA− (H+/P+QA−) and PQA− (H+/QA−) (P is the primary electron donor, a noncovalently linked bacteriochlorophyll dimer) states have been measured in the M246Ala → Glu and the M247Ala → Asp mutant RC, in the M246Ala–M247Ala → Glu–Asp double mutant and in the wild type (WT). Our results show that the introduction of an acidic group (Glu or Asp) in the QA protein region induces notable additional proton uptake over a large pH region (∼6–9), which reflects a delocalized response of the protein to the formation of QA−. This may indicate the existence of a widely spread proton reservoir in the cytoplasmic region of the protein. Interestingly, the pH titration curves of the proton release caused by the formation of P+ (H+/P+: difference between H+/P+QA− and H+/PQA− curves) are nearly superimposable in the WT and the M246Ala → Glu mutant RC, but substantial additional proton release is detected between pH 7 and 9 in the M247Ala → Asp mutant RC. This effect can be accounted for by an increased proton release by the P+ environment in the M247Ala → Asp mutant. The M247Ala → Asp mutation reveals the existence of an energetic and conformational coupling between donor and acceptor sides of the RC at a distance of nearly 30Å.
Photochemistry and Photobiology | 2014
László Kovács; Ferhan Ayaydin; Tamás Kálai; Júlia Tandori; Péter B. Kós; Éva Hideg
Singlet oxygen (1O2) is of special interest in plant stress physiology. Studies focused on internal, chlorophyll‐mediated production are often complemented with the use of artificial 1O2 photosensitizers. Here, we report a comparative study on the effects of Rose Bengal (RB), Methylene Violet (MVI), Neutral Red (NR) and Indigo Carmine (IC). These were infiltrated into tobacco leaves at concentrations generating the same fluxes of 1O2 in solution. Following green light‐induced 1O2 production from these dyes, leaf photosynthesis was characterized by Photosystem (PS) II and PSI electron transport and oxidative damage was monitored as degradation of D1, a PSII core protein. Cellular localizations were identified on the basis of the dyes’ fluorescence using confocal laser scanning microscopy. We found that RB and NR were both localized in chloroplasts but the latter had very little effect, probably due to its pH‐dependent photosensitizing. Both RB and intracellular, nonplastid MVI decreased PSII electron transport, but the effect of RB was stronger than that of MVI and only RB was capable of damaging the D1 protein. Intercellularly localized IC had no significant effect. Our results also suggest caution when using RB as photosensitizer because it affects PSII electron transport.
Biochimica et Biophysica Acta | 2009
Hélène Cheap; Sophie Bernad; Valérie Derrien; László Gerencsér; Júlia Tandori; Pedro de Oliveira; Deborah K. Hanson; Péter Maróti; Pierre Sebban
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.
Biochemistry | 1996
Jaroslava Miksovska; Péter Maróti; Júlia Tandori; Marianne Schiffer; Deborah K. Hanson; Pierre Sebban