Julia Vierheilig
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julia Vierheilig.
Nature | 2015
Holger Daims; Elena V. Lebedeva; Petra Pjevac; Ping Han; Craig W. Herbold; Mads Albertsen; Nico Jehmlich; Marton Palatinszky; Julia Vierheilig; A. G. Bulaev; Rasmus Hansen Kirkegaard; Martin von Bergen; Thomas Rattei; Bernd Bendinger; Per Halkjær Nielsen; Michael Wagner
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.
Science | 2017
Frederik Schulz; Natalya Yutin; Natalia Ivanova; Davi R. Ortega; Tae Kwon Lee; Julia Vierheilig; Holger Daims; Matthias Horn; Michael Wagner; Grant J. Jensen; Nikos C. Kyrpides; Eugene V. Koonin; Tanja Woyke
Viral evolution is revealed by giant viruses encoding multiple components of the protein translation machinery. The evolution of giant virus genomes Some giant viruses encode a genome larger than that of some bacteria, but their evolutionary history is a mystery. Examining the genomes within a sample from a wastewater treatment plant in Austria, Schulz et al. assembled a previously undiscovered giant virus genome, which they used to mine genetic databases for related viruses. The authors thus identified a group of giant viruses with more genes encoding components of the protein translation machinery, including aminoacyl transfer RNA synthetases, than in other giant viruses. Phylogenetic analyses suggest that the genes were acquired in an evolutionarily recent time frame, likely from, and as an adaptation to, their hosts. Science, this issue p. 82 The discovery of giant viruses blurred the sharp division between viruses and cellular life. Giant virus genomes encode proteins considered as signatures of cellular organisms, particularly translation system components, prompting hypotheses that these viruses derived from a fourth domain of cellular life. Here we report the discovery of a group of giant viruses (Klosneuviruses) in metagenomic data. Compared with other giant viruses, the Klosneuviruses encode an expanded translation machinery, including aminoacyl transfer RNA synthetases with specificities for all 20 amino acids. Notwithstanding the prevalence of translation system components, comprehensive phylogenomic analysis of these genes indicates that Klosneuviruses did not evolve from a cellular ancestor but rather are derived from a much smaller virus through extensive gain of host genes.
Environmental Science & Technology | 2011
Georg H. Reischer; Denny Kollanur; Julia Vierheilig; Claudia C. Wehrspaun; Robert L. Mach; Regina Sommer; Hermann Stadler; Andreas H. Farnleitner
Water resource management must strive to link catchment information with water quality monitoring. The present study attempted this for the field of microbial fecal source tracking (MST). A fecal pollution source profile based on catchment data (e.g., prevalence of fecal sources) was used to formulate a hypothesis about the dominant sources of pollution in an Austrian mountainous karst spring catchment. This allowed a statistical definition of methodical requirements necessary for an informed choice of MST methods. The hypothesis was tested in a 17-month investigation of spring water quality. The study followed a nested sampling design in order to cover the hydrological and pollution dynamics of the spring and to assess effects such as differential persistence between parameters. Genetic markers for the potential fecal sources as well as microbiological, hydrological, and chemo−physical parameters were measured. The hypothesis that ruminant animals were the dominant sources of fecal pollution in the catchment was clearly confirmed. It was also shown that the concentration of ruminant markers in feces was equally distributed in different ruminant source groups. The developed approach provides a tool for careful decision-making in MST study design and might be applied on various types of catchments and pollution situations.
Applied and Environmental Microbiology | 2013
Julia Vierheilig; Christina Frick; R. E. Mayer; Alexander K. T. Kirschner; Georg H. Reischer; Julia Derx; Robert L. Mach; Regina Sommer; Andreas H. Farnleitner
ABSTRACT During a 3-year study, Clostridium perfringens was investigated in defined fecal sources from a temperate alluvial backwater area of a large river system. The results reveal that using C. perfringens as a conservative water quality indicator for total fecal pollution monitoring is no longer justified but suggest that it can be used as a tracer for excreta from nonherbivorous wildlife and human sewage.
Journal of Microbiological Methods | 2012
Julia Vierheilig; Andreas H. Farnleitner; Denny Kollanur; Günter Blöschl; Georg H. Reischer
Two frequently applied genetic Bacteroidetes markers for total fecal pollution (AllBac and BacUni) were found in high numbers in pristine soil samples of two alpine catchment areas casting doubt on their value as fecal indicators. This finding underlines the necessity to evaluate assays locally and against non-intestinal samples before application.
Water Science and Technology | 2015
Julia Vierheilig; Domenico Savio; Ruth E. Ley; Robert L. Mach; Andreas H. Farnleitner; Georg H. Reischer
The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multi-compartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems.
Applied and Environmental Microbiology | 2015
R. E. Mayer; Julia Vierheilig; Lukas Egle; Georg H. Reischer; E. Saracevic; Robert L. Mach; Alexander K. T. Kirschner; Matthias Zessner; Regina Sommer; Andreas H. Farnleitner
ABSTRACT Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better understanding and monitoring of municipal WWTPs as sources of fecal pollution in water resources.
Archive | 2014
Alexander K. T. Kirschner; Gerhard G. Kavka; Georg H. Reischer; Regina Sommer; A. Paul Blaschke; Margaret E. Stevenson; Julia Vierheilig; Robert L. Mach; Andreas H. Farnleitner
Fecal microbial pollution is a major problem throughout the Danube River Basin, posing a threat to various types of water use, including drinking water production from river bank filtrates, water supply for agricultural and industrial use, and the role of the river as a recreational space. Fecal microbial pollution is introduced into the river by point sources, such as discharges of treated or untreated sewage from human sources or livestock, and by nonpoint sources, such as urban and agricultural runoff. In addition, fecal input from wildlife may be of importance in specific regions. Despite huge efforts to improve wastewater management in the past decade, in many sections, the river and its tributaries exhibit very high levels of fecal microbial pollution. To assess microbiological water quality, indicators of fecal pollution are used as surrogates for the potential presence of intestinal pathogens. However, the standard indicators cannot provide any reliable information regarding the origin of fecal pollution, nor can their concentration levels be directly related to human health risks for many types of exposure and situations.
Frontiers in Microbiology | 2018
Anne Daebeler; Craig W. Herbold; Julia Vierheilig; Christopher J. Sedlacek; Petra Pjevac; Mads Albertsen; Rasmus Hansen Kirkegaard; José R. de la Torre; Holger Daims; Michael Wagner
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one§ enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus,” is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation§. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes§ – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
bioRxiv | 2017
Anne Daebeler; Craig W. Herbold; Julia Vierheilig; Christopher J. Sedlacek; Petra Pjevac; Mads Albersten; Rasmus Hansen Kirkegaard; José R. de la Torre; Holger Daims; Michael Wagner
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaea are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaea in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50 °C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a novel Thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85 %) enrichment from biofilm of an Icelandic hot spring (73 °C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus”, is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 °C and 70 °C. Ca. N. islandicus encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as Ca. N. islandicus is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that Ca. N. islandicus has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaea. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.