Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian C. Rayner is active.

Publication


Featured researches published by Julian C. Rayner.


Nature | 2011

Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum

Cécile Crosnier; Leyla Y. Bustamante; S. Josefin Bartholdson; Amy K. Bei; Michel Theron; Makoto Uchikawa; Souleymane Mboup; Omar Ndir; Dominic P. Kwiatkowski; Manoj T. Duraisingh; Julian C. Rayner; Gavin J. Wright

Erythrocyte invasion by Plasmodium falciparum is central to the pathogenesis of malaria. Invasion requires a series of extracellular recognition events between erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. None of the few known receptor–ligand interactions involved are required in all parasite strains, indicating that the parasite is able to access multiple redundant invasion pathways. Here, we show that we have identified a receptor–ligand pair that is essential for erythrocyte invasion in all tested P. falciparum strains. By systematically screening a library of erythrocyte proteins, we have found that the Ok blood group antigen, basigin, is a receptor for PfRh5, a parasite ligand that is essential for blood stage growth. Erythrocyte invasion was potently inhibited by soluble basigin or by basigin knockdown, and invasion could be completely blocked using low concentrations of anti-basigin antibodies; importantly, these effects were observed across all laboratory-adapted and field strains tested. Furthermore, Oka− erythrocytes, which express a basigin variant that has a weaker binding affinity for PfRh5, had reduced invasion efficiencies. Our discovery of a cross-strain dependency on a single extracellular receptor–ligand pair for erythrocyte invasion by P. falciparum provides a focus for new anti-malarial therapies.


Nature Genetics | 2013

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto; Jacob Almagro-Garcia; Magnus Manske; Bronwyn MacInnis; Susana Campino; Kirk A. Rockett; Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Jennifer M. Anderson; Socheat Duong; Chea Nguon; Char Meng Chuor; David L. Saunders; Youry Se; Chantap Lon; Mark M. Fukuda; Lucas Amenga-Etego; Abraham Hodgson; Victor Asoala; Mallika Imwong; Shannon Takala-Harrison; François Nosten; Xin-Zhuan Su; Pascal Ringwald; Frédéric Ariey; Christiane Dolecek; Tran Tinh Hien; Maciej F. Boni

We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.


Nature | 2012

Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

Magnus Manske; Olivo Miotto; Susana Campino; Sarah Auburn; Jacob Almagro-Garcia; Gareth Maslen; Jack O’Brien; Abdoulaye Djimde; Ogobara K. Doumbo; Issaka Zongo; Jean-Bosco Ouédraogo; Pascal Michon; Ivo Mueller; Peter Siba; Alexis Nzila; Steffen Borrmann; Steven M. Kiara; Kevin Marsh; Hongying Jiang; Xin-Zhuan Su; Chanaki Amaratunga; Rick M. Fairhurst; Duong Socheat; François Nosten; Mallika Imwong; Nicholas J. White; Mandy Sanders; Elisa Anastasi; Dan Alcock; Eleanor Drury

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Nature | 2015

A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Nature Communications | 2014

African origin of the malaria parasite Plasmodium vivax

Weimin Liu; Yingying Li; Katharina S. Shaw; Gerald H. Learn; Lindsey J. Plenderleith; Jordan A. Malenke; Sesh A. Sundararaman; Miguel Ángel Ramírez; Patricia A. Crystal; Andrew G. Smith; Frederic Bibollet-Ruche; Ahidjo Ayouba; Sabrina Locatelli; Amandine Esteban; Fatima Mouacha; Emilande Guichet; Christelle Butel; Steve Ahuka-Mundeke; Bila Isia Inogwabini; Jean Bosco N Ndjango; Sheri Speede; Crickette Sanz; David Morgan; Mary Katherine Gonder; Philip J. Kranzusch; Peter D. Walsh; Alexander V. Georgiev; Martin N. Muller; Alex K. Piel; Fiona A. Stewart

Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.


Cell Host & Microbe | 2012

Analysis of Protein Palmitoylation Reveals a Pervasive Role in Plasmodium Development and Pathogenesis

Matthew L. Jones; Mark O. Collins; David Goulding; Jyoti S. Choudhary; Julian C. Rayner

Summary Asexual stage Plasmodium falciparum replicates and undergoes a tightly regulated developmental process in human erythrocytes. One mechanism involved in the regulation of this process is posttranslational modification (PTM) of parasite proteins. Palmitoylation is a PTM in which cysteine residues undergo a reversible lipid modification, which can regulate target proteins in diverse ways. Using complementary palmitoyl protein purification approaches and quantitative mass spectrometry, we examined protein palmitoylation in asexual-stage P. falciparum parasites and identified over 400 palmitoylated proteins, including those involved in cytoadherence, drug resistance, signaling, development, and invasion. Consistent with the prevalence of palmitoylated proteins, palmitoylation is essential for P. falciparum asexual development and influences erythrocyte invasion by directly regulating the stability of components of the actin-myosin invasion motor. Furthermore, P. falciparum uses palmitoylation in diverse ways, stably modifying some proteins while dynamically palmitoylating others. Palmitoylation therefore plays a central role in regulating P. falciparum blood stage development.


Cell Host & Microbe | 2012

A Plasmodium Calcium-Dependent Protein Kinase Controls Zygote Development and Transmission by Translationally Activating Repressed mRNAs

Sarah Sebastian; Mathieu Brochet; Mark O. Collins; Frank Schwach; Matthew L. Jones; David Goulding; Julian C. Rayner; Jyoti S. Choudhary; Oliver Billker

Summary Calcium-dependent protein kinases (CDPKs) play key regulatory roles in the life cycle of the malaria parasite, but in many cases their precise molecular functions are unknown. Using the rodent malaria parasite Plasmodium berghei, we show that CDPK1, which is known to be essential in the asexual blood stage of the parasite, is expressed in all life stages and is indispensable during the sexual mosquito life-cycle stages. Knockdown of CDPK1 in sexual stages resulted in developmentally arrested parasites and prevented mosquito transmission, and these effects were independent of the previously proposed function for CDPK1 in regulating parasite motility. In-depth translational and transcriptional profiling of arrested parasites revealed that CDPK1 translationally activates mRNA species in the developing zygote that in macrogametes remain repressed via their 3′ and 5′UTRs. These findings indicate that CDPK1 is a multifunctional protein that translationally regulates mRNAs to ensure timely and stage-specific protein expression.


PLOS Pathogens | 2015

Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes

Greta E. Weiss; Paul R. Gilson; Tana Taechalertpaisarn; Wai-Hong Tham; Nienke W. M. de Jong; Katherine L. Harvey; Freya J. I. Fowkes; Paul N. Barlow; Julian C. Rayner; Gavin J. Wright; Alan F. Cowman; Brendan S. Crabb

During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.


Trends in Parasitology | 2011

A plethora of Plasmodium species in wild apes: a source of human infection?

Julian C. Rayner; Weimin Liu; Martine Peeters; Paul M. Sharp; Beatrice H. Hahn

Recent studies of captive and wild-living apes in Africa have uncovered evidence of numerous new Plasmodium species, one of which was identified as the immediate precursor of human Plasmodium falciparum. These findings raise the question whether wild apes could be a recurrent source of Plasmodium infections in humans. This question is not new, but was the subject of intense investigation by researchers in the first half of the last century. Re-examination of their work in the context of recent molecular findings provides a new framework to understand the diversity of Plasmodium species and to assess the risk of future cross-species transmissions to humans in the context of proposed malaria eradication programs.


Science Translational Medicine | 2014

New antigens for a multicomponent blood-stage malaria vaccine

Faith Osier; Margaret J. Mackinnon; Cécile Crosnier; Gregory Fegan; Gathoni Kamuyu; Madushi Wanaguru; Edna Ogada; Brian McDade; Julian C. Rayner; Gavin J. Wright; Kevin Marsh

Uncharacterized proteins from the merozoite stage of Plasmodium falciparum provide new antigens for malaria blood-stage vaccine development. Combine and Conquer Malaria vaccine development has been hampered by the inability to produce high-quality recombinant proteins for immunological studies. In a new study by Osier and colleagues, this constraint was overcome by systematically testing a library of biochemically active malaria parasite proteins in Kenyan children naturally exposed to malaria. The authors identified new proteins with superior or equivalent potential protective efficacy compared to established vaccine candidates. Moreover, cumulative responses to combinations of 5 of the top 10 ranked antigens correlated with 100% protection against malaria. These data suggest that there are potentially many more vaccine targets and that effective vaccination may be achieved through combinations of the best of these. An effective blood-stage vaccine against Plasmodium falciparum remains a research priority, but the number of antigens that have been translated into multicomponent vaccines for testing in clinical trials remains limited. Investigating the large number of potential targets found in the parasite proteome has been constrained by an inability to produce natively folded recombinant antigens for immunological studies. We overcame these constraints by generating a large library of biochemically active merozoite surface and secreted full-length ectodomain proteins. We then systematically examined the antibody reactivity against these proteins in a cohort of Kenyan children (n = 286) who were sampled at the start of a malaria transmission season and prospectively monitored for clinical episodes of malaria over the ensuing 6 months. We found that antibodies to previously untested or little-studied proteins had superior or equivalent potential protective efficacy to the handful of current leading malaria vaccine candidates. Moreover, cumulative responses to combinations comprising 5 of the 10 top-ranked antigens, including PF3D7_1136200, MSP2, RhopH3, P41, MSP11, MSP3, PF3D7_0606800, AMA1, Pf113, and MSRP1, were associated with 100% protection against clinical episodes of malaria. These data suggest not only that there are many more potential antigen candidates for the malaria vaccine development pipeline but also that effective vaccination may be achieved by combining a selection of these antigens.

Collaboration


Dive into the Julian C. Rayner's collaboration.

Top Co-Authors

Avatar

Gavin J. Wright

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Oliver Billker

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Cécile Crosnier

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weimin Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Leyla Y. Bustamante

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jyoti S. Choudhary

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge