Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian D. Down is active.

Publication


Featured researches published by Julian D. Down.


Nature | 2010

Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia

Marina Cavazzana-Calvo; Emmanuel Payen; Olivier Negre; Gary P. Wang; Kathleen Hehir; Floriane Fusil; Julian D. Down; Maria Denaro; Troy Brady; Karen A. Westerman; Resy Cavallesco; Beatrix Gillet-Legrand; Laure Caccavelli; Riccardo Sgarra; Leila Maouche-Chretien; Françoise Bernaudin; Robert Girot; Ronald Dorazio; Geert Jan Mulder; Axel Polack; Arthur Bank; Jean Soulier; Jérôme Larghero; Nabil Kabbara; Bruno Dalle; Bernard Gourmel; Gérard Socié; Stany Chrétien; Nathalie Cartier; Patrick Aubourg

The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound βE/β0-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The βE-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated βE-globin with partial instability. When this is compounded with a non-functional β0 allele, a profound decrease in β-globin synthesis results, and approximately half of βE/β0-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe βE/β0-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl−1, of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia

Kalindi Parmar; Peter Mauch; Jo-Anne Vergilio; Robert Sackstein; Julian D. Down

The interaction of stem cells with their bone marrow microenvironment is a critical process in maintaining normal hematopoiesis. We applied an approach to resolve the spatial organization that underlies these interactions by evaluating the distribution of hematopoietic cell subsets along an in vivo Hoechst 33342 (Ho) dye perfusion gradient. Cells isolated from different bone marrow regions according to Ho fluorescence intensity contained the highest concentration of hematopoietic stem cell (HSC) activity in the lowest end of the Ho gradient (i.e., in the regions reflecting diminished perfusion). Consistent with the ability of Ho perfusion to simulate the level of oxygenation, bone marrow fractions separately enriched for HSCs were found to be the most positive for the binding of the hypoxic marker pimonidazole. Moreover, the in vivo administration of the hypoxic cytotoxic agent tirapazamine exhibited selective toxicity to the primitive stem cell subset. These data collectively indicate that HSCs and the supporting cells of the stem cell niche are predominantly located at the lowest end of an oxygen gradient in the bone marrow with the implication that regionally defined hypoxia plays a fundamental role in regulating stem cell function.


Transplantation | 2000

High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response

L. Bühler; Michel Awwad; M. Basker; S. Gojo; A. Watts; S. Treter; K. Nash; G. Oravec; Q. Chang; Aron D. Thall; Julian D. Down; Megan Sykes; David Andrews; Robert Sackstein; M. E. White-Scharf; David H. Sachs; David K. C. Cooper

BACKGROUND In pig-to-primate organ transplantation, hyperacute rejection can be prevented, but the organ is rejected within days by acute vascular rejection, in which induced high-affinity anti-Gal alpha1-3Gal (alphaGal) IgG and possibly antibodies directed against new porcine (non-alphaGal) antigenic determinants are considered to play a major role. We have explored the role of an anti-CD40L monoclonal antibody in modifying the humoral response to porcine hematopoietic cells in baboons pretreated with a nonmyeloablative regimen. METHODS Porcine peripheral blood mobilized progenitor cells obtained by leukapheresis from both major histocompatibility complex-inbred miniature swine (n=7) and human decay-accelerating factor pigs (n=3) were transplanted into baboons. Group 1 baboons (n=3) underwent whole body (300 cGy) and thymic (700 cGy) irradiation, T cell depletion with ATG, complement depletion with cobra venom factor, short courses of cyclosporine, mycophenolate mofetil, porcine hematopoietic growth factors, and anti-alphaGal antibody depletion by immunoadsorption before transplantation of high doses (2-4 x 10(10)/cells/kg) of peripheral blood mobilized progenitor cells. In group 2 (n=5), cyclosporine was replaced by eight doses of anti-CD40L monoclonal antibodies over 14 days. The group 3 baboons (n=2) received the group 1 regimen plus 2 doses of anti-CD40L monoclonal antibodies (on days 0 and 2). RESULTS In group 1, sensitization to alphaGal (with increases in IgM and IgG of 3- to 6-fold and 100-fold, respectively) and the development of antibodies to new non-alphaGal porcine antigens occurred within 20 days. In group 2, no sensitization to alphaGal or non-alphaGal determinants was seen, but alphaGal-reactive antibodies did return to their pre- peripheral blood mobilized progenitor cells transplant levels. In group 3, attenuated sensitization to alphaGal antigens was seen after cessation of cyclosporine and mycophenolate mofetil therapy at 30 days (IgM 4-fold, IgG 8-30-fold), but no antibodies developed against new porcine determinants. In no baboon did anti-CD40L monoclonal antibodies prevent sensitization to its own murine antigens. CONCLUSIONS We believe these studies are the first to consistently demonstrate prevention of a secondary humoral response after cell or organ transplantation in a pig-to-primate model. The development of sensitization to the murine elements of the anti-CD40L monoclonal antibodies suggests that nonresponsiveness to cell membrane-bound antigen (e.g., alphaGal) is a specific phenomenon and not a general manifestation of immunological unresponsiveness. T cell costimulatory blockade may facilitate induction of mixed hematopoietic chimerism and, consequently, of tolerance to pig organs and tissues.


Radiotherapy and Oncology | 1986

Dose-rate effects and the repair of radiation damage

G. Gordon Steel; Julian D. Down; John H. Peacock; Trevor C. Stephens

The extent of dose-sparing that occurs in a variety of cell lines and in vivo cell systems as a result of a reduction in dose-rate is reviewed. The emphasis is on the range from around 200 cGy/min down to 5 cGy/min, in which the predominant reason for dose-sparing is the repair of radiation damage. Dose-rate dependence is considered in relation to the Lethal-Potentially Lethal model of cell inactivation, which satisfactorily fits 4 sets of data that we have tested; estimates of half-time for repair varied from 0.07 to 1.4 h. The model shows that in spite of these short half-times, repair will often continue to influence response down to dose-rates below 5 cGy/min. The steepness of the dose-rate dependence varies widely among in vitro cell lines and among mouse normal tissues, indeed the ranges in vitro and in vivo are similar. Haemopoietic tissues are much less spared by a lowering of dose-rate than are other normal tissues. Uncertainties about the rate of reoxygenation preclude similar considerations in experimental tumours in vivo. There is a need for detailed studies of dose-rate dependence in human tumour cell lines, and the present review outlines the basis (including the optimum dose-rate range) for such studies.


Radiation Research | 1983

The expression of early and late damage after thoracic irradiation: a comparison between cba and c57bl mice.

Julian D. Down; G. Gordon Steel

Lung injury after localized irradiation of the thorax was quantified and compared in CBA and C57B1 mice. Using lethality and breathing rate as end points, two phases of damage separated in time were distinguished in CBA mice as an early pneumonitic phase and a later phase associated with pleural effusions. C57B1 mice failed to show the pneumonitic response over a large dose range extending beyond 20 Gy. In this respect they differ from most other mouse strains so far studied. At the lower doses the extent of the late phase was similar between these two strains. The interstrain comparison presented suggests that damage to separate tissue compartments was responsible for the acute and chronic responses.


Radiotherapy and Oncology | 1986

Repair in the mouse lung during low dose-rate irradiation

Julian D. Down; Douglas F. Easton; G. Gordon Steel

The thorax of CBA mice was exposed to 60Co gamma-rays at dose rates ranging from 100 to 2 cGy/min. Iso-effect doses (ED50) were calculated for early and late lung damage from dose-response curves for breathing rate and lethality. A continuous increase in tolerance for early radiation pneumonitis was seen as the dose rate was reduced, reaching a dose recovery factor (DRF) of 2.6 at 2 cGy/min. There was significantly less dose sparing with 2 cGy/min for the rise in breathing rate during expression of late damage (DRF = 2.1). The lower DRF compared well with that obtained from late measurements of pleural fluid levels. Comparison with fractionation experiments indicated incomplete repair at 2 cGy/min with further dose recovery expected at even lower dose rates or at doses per fraction below 200 cGy. Since the dose-rate dependence of damage to haemopoietic tissue is less marked, this study predicts an advantage of employing low dose-rate total-body irradiation (TBI) in the treatment of bone-marrow transplant patients. A further gain in the therapeutic index may be expected using a hyperfractionated regime with small doses per fraction.


International Journal of Radiation Biology | 1992

Murine Haemopoietic Stem Cells with Long-term Engraftment and Marrow Repopulating Ability are More Resistant to Gamma-radiation than are Spleen Colony Forming Cells

Rob E. Ploemacher; R. Van Os; Ca van Beurden; Julian D. Down

The radiation sensitivity of various subsets in the haemopoietic stem cell hierarchy was defined using a limiting dilution type long-term bone marrow culture technique that was previously shown to allow quantification of cells with spleen colony-forming potential (day-12 CFU-S) and in vivo marrow repopulating ability (MRA). Primitive stem cells that generate new in vitro clonable colony-forming cells (CFU-C) in the irradiated marrow (MRA) and have long-term repopulation ability (LTRA) in vitro (cobblestone area forming cell, CAFC day-28) had D0 values of 1.25 and 1.38 Gy, respectively. A lower D0 was found for the less primitive CFU-S day-12, CAFC day-12 and cells with erythroid repopulating ability (0.91, 1.08 and 0.97 Gy, respectively). CFU-S day-7 were the most radiosensitive (D0 equalling 0.79 Gy), while CFU-C and CAFC day-5 were relatively resistant to irradiation (D0 1.33 and 1.77 Gy). Split-dose irradiation with a 6 h interval gave dose sparing for stem cells with MRA and even more with in vitro LTRA, less for CFU-S day-12 and CAFC day-10 and none for CFU-S day-7. The cell survival data of the specified stem cell populations were compared with the ability of a fixed number of B6-Gpi-1a donor bone marrow cells to provide for short- and long-term engraftment in single- and split-dose irradiated congenic B6-Gpi-1b mice. Serial blood glucose phosphate isomerase (Gpi) phenotyping showed less chimerism in the split as compared to the single radiation dose groups beyond 4 weeks after transplant. Radiation dose-response curves corresponding to stable chimerism at 12 weeks for single and fractionated doses revealed appreciable split-dose recovery (D2-D1) in the order of 2 Gy. This was comparable to D2-D1 estimates for MRA and late-developing CAFC (1.27 and 1.43 Gy, respectively), but differed from the poor dose recovery in cells corresponding to the committed CFU-S day-7/12 and CAFC day-10 population (0.14-0.33 Gy). These data are together consistent with differential radiosensitivity and repair in the haemopoietic stem cell hierarchy, and provide a cellular basis for explaining the dose-sparing effect of fractionated total-body irradiation conditioning on long-term host marrow repopulation.


Transplantation | 1992

The Effect Of Donor T Lymphocytes And Total-body Irradiation On Hemopoietic Engraftment And Pulmonary Toxicity Following Experimental Allogeneic Bone Marrow Transplantation

Julian D. Down; Peter Mauch; Michael J. Warhol; Stephen Neben; James L.M. Ferrara

To study the effects of donor T lymphocytes on engraftment and graft-versus-host disease in relation to recipient total-body irradiation, we have returned small numbers of T cells to T-cell-depleted bone marrow transplanted across a minor histocompatibility barrier in mice (B10.BR°CBA). T-cell-depleted B10.BR marrow (107 cells) was transplanted into CBA recipients prepared with TBI doses ranging from 4 to 14 Gy. Selected animals also received 104 (0.1%) and 105 (1.0%) measured B10.BR T lymphocytes. The extent of donor marrow engraftment was determined from hemoglobin and carbonic anhydrase phenotyping of peripheral blood at 3 months posttransplant. Toxicity was assessed from breathing-rate measurements, histopathology, and animal survival. Addition of T cells had a profound effect on survival related to radiation dose. The TBI doses resulting in an LD50 at 12 weeks were 6.9 Gy, 9.3 Gy, and 13.0 Gy for animals receiving 105, 104, and no T cells, respectively. Mortality was associated with pulmonary dysfunction as measured by an elevation of breathing rates. Autopsy and histological analysis revealed extensive damage to the lung parenchyma. In contrast to the toxicity data, addition of T cells to the donor marrow had no effect on the TBI dose required for equivalent erythroid engraftment. These results demonstrate that in combination with TBI small numbers of T cells in the transplanted marrow do not aid engraftment but do significantly increase the risk of pulmonary toxicity.


Radiation Research | 2010

Revisiting Strain-Related Differences in Radiation Sensitivity of the Mouse Lung: Recognizing and Avoiding the Confounding Effects of Pleural Effusions

Isabel L. Jackson; Zeljko Vujaskovic; Julian D. Down

Abstract The mouse has been used extensively to model radiation injury to the lung, a major dose-limiting organ for radiotherapy. Substantial differences in the timing and sensitivity of this tissue between mouse strains have been reported, with some strains, including C57BL/6, being designated as “fibrosis-prone”. Pleural effusions have also been reported to be a prominent problem in many mouse strains, but it remains unclear how this affects the lung function and survival of the standard C57BL/6 mouse. The purpose of this investigation was to re-evaluate this strain in comparison with C57L and CBA mice after whole-thorax irradiation at doses ranging from 10 to 15 Gy. Breathing rate measurements, micro-computerized tomography, lung tissue weight, pleural fluid weight and histopathology showed that the most prominent features were an early phase of pneumonitis (C57L and CBA) followed by a late incidence of massive pleural effusions (CBA and C57BL/6). A remarkable difference was seen between the C57 strains: The C57L mice were exquisitely sensitive to early pneumonitis at 3 to 4 months while C57BL/6 mice showed a delayed response, with most mice presenting with large accumulations of pleural fluid at 6 to 9 months. These results therefore caution against the routine use of C57BL/6 mice in radiation lung experiments because pleural effusions are rarely observed in patients as a consequence of radiotherapy. Future experiments designed to investigate genetic determinants of radiation lung damage should focus on the high sensitivity of the C57L strain (in comparison with CBA or C3H mice) and the possibility that they are more susceptible to pulmonary fibrosis as well as pneumonitis.


International Journal of Radiation Oncology Biology Physics | 1987

Fractionation and dose rate effects in mice: A model for bone marrow transplantation in man

Nancy J. Tarbell; David A. Amato; Julian D. Down; Peter Mauch; Samuel Hellman

This study was designed to compare several fractionation and dose rate schedules to optimize the therapeutic ratio for total body irradiation (TBI). C3H/HeJ mice were given TBI and the bone marrow survival fraction was calculated using the CFUS assay. Irradiation was given at two dose rates: low dose rate (LDR) at 5 cGy/min or high dose rate (HDR) at 80 cGy/min in single fraction and fractionated regimens. The fractionated regimens were given as either 120 cGy three times daily, 200 cGy twice daily, or 200 cGy daily. The Do was 80 cGy for the single fraction, HDR group and 85 for the LDR group. For the fractionated regimens, the apparent Dos ranged from 55-65 indicating no sparing effect of fractionation for the normal bone marrow stem cells. Indeed, the Dos were smaller suggesting an increased sensitivity to irradiation with fractionation. Low dose rate (LDR) and fractionation were also studied for their influence on normal tissue toxicity following upper half body irradiation (UHBI). All the fractionated regimens had higher LD50/30 and LD50/30-180 values than those achieved by single fraction LDR alone. There was no significant dose rate effect for LD50/30 when 120 or 200 cGy fractions were used. However, dose rate was important for LD50/30-180 with 200 cGy but not with 120 cGy fractions. These results demonstrate protection of non-hematopoietic tissues with fractionation and low dose rate without protecting hematopoietic stem cells and may have implications for human bone marrow transplantation.

Collaboration


Dive into the Julian D. Down's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Mauch

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Sackstein

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge