Julian Fierrez
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julian Fierrez.
Pattern Recognition Letters | 2007
Julian Fierrez; Javier Ortega-Garcia; Daniel Ramos; Joaquin Gonzalez-Rodriguez
A function-based approach to on-line signature verification is presented. The system uses a set of time sequences and Hidden Markov Models (HMMs). Development and evaluation experiments are reported on a subcorpus of the MCYT bimodal biometric database comprising more than 7000 signatures from 145 subjects. The system is compared to other state-of-the-art systems based on the results of the First International Signature Verification Competition (SVC 2004). A number of practical findings related to feature extraction and modeling are obtained.
IEEE Transactions on Information Forensics and Security | 2007
Fernando Alonso-Fernandez; Julian Fierrez; Javier Ortega-Garcia; Joaquin Gonzalez-Rodriguez; Hartwig Fronthaler; Klaus Kollreider; Josef Bigun
One of the open issues in fingerprint verification is the lack of robustness against image-quality degradation. Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system. Therefore, it is important for a fingerprint recognition system to estimate the quality and validity of the captured fingerprint images. In this work, we review existing approaches for fingerprint image-quality estimation, including the rationale behind the published measures and visual examples showing their behavior under different quality conditions. We have also tested a selection of fingerprint image-quality estimation algorithms. For the experiments, we employ the BioSec multimodal baseline corpus, which includes 19 200 fingerprint images from 200 individuals acquired in two sessions with three different sensors. The behavior of the selected quality measures is compared, showing high correlation between them in most cases. The effect of low-quality samples in the verification performance is also studied for a widely available minutiae-based fingerprint matching system.
IEEE Transactions on Image Processing | 2014
Javier Galbally; Sébastien Marcel; Julian Fierrez
To ensure the actual presence of a real legitimate trait in contrast to a fake self-manufactured synthetic or reconstructed sample is a significant problem in biometric authentication, which requires the development of new and efficient protection measures. In this paper, we present a novel software-based fake detection method that can be used in multiple biometric systems to detect different types of fraudulent access attempts. The objective of the proposed system is to enhance the security of biometric recognition frameworks, by adding liveness assessment in a fast, user-friendly, and non-intrusive manner, through the use of image quality assessment. The proposed approach presents a very low degree of complexity, which makes it suitable for real-time applications, using 25 general image quality features extracted from one image (i.e., the same acquired for authentication purposes) to distinguish between legitimate and impostor samples. The experimental results, obtained on publicly available data sets of fingerprint, iris, and 2D face, show that the proposed method is highly competitive compared with other state-of-the-art approaches and that the analysis of the general image quality of real biometric samples reveals highly valuable information that may be very efficiently used to discriminate them from fake traits.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010
Javier Ortega-Garcia; Julian Fierrez; Fernando Alonso-Fernandez; Javier Galbally; Manuel Freire; Joaquin Gonzalez-Rodriguez; Carmen García-Mateo; Jose-Luis Alba-Castro; Elisardo González-Agulla; Enrique Otero-Muras; Sonia Garcia-Salicetti; Lorene Allano; Bao Ly-Van; Bernadette Dorizzi; Josef Kittler; Thirimachos Bourlai; Norman Poh; Farzin Deravi; Ming Wah R. Ng; Michael C. Fairhurst; Jean Hennebert; Andrea Monika Humm; Massimo Tistarelli; Linda Brodo; Jonas Richiardi; Andrzej Drygajlo; Harald Ganster; Federico M. Sukno; Sri-Kaushik Pavani; Alejandro F. Frangi
A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1 over the Internet, 2 in an office environment with desktop PC, and 3 in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008.
Pattern Recognition | 2007
Julian Fierrez; Javier Ortega-Garcia; Doroteo Torre Toledano; Joaquin Gonzalez-Rodriguez
The baseline corpus of a new multimodal database, acquired in the framework of the FP6 EU BioSec Integrated Project, is presented. The corpus consists of fingerprint images acquired with three different sensors, frontal face images from a webcam, iris images from an iris sensor, and voice utterances acquired both with a close-talk headset and a distant webcam microphone. The BioSec baseline corpus includes real multimodal data from 200 individuals in two acquisition sessions. In this contribution, the acquisition setup and protocol are outlined, and the contents of the corpus-including data and population statistics-are described. The database will be publicly available for research purposes by mid-2006.
Future Generation Computer Systems | 2012
Javier Galbally; Fernando Alonso-Fernandez; Julian Fierrez; Javier Ortega-Garcia
A new software-based liveness detection approach using a novel fingerprint parameterization based on quality related features is proposed. The system is tested on a highly challenging database comprising over 10,500 real and fake images acquired with five sensors of different technologies and covering a wide range of direct attack scenarios in terms of materials and procedures followed to generate the gummy fingers. The proposed solution proves to be robust to the multi-scenario dataset, and presents an overall rate of 90% correctly classified samples. Furthermore, the liveness detection method presented has the added advantage over previously studied techniques of needing just one image from a finger to decide whether it is real or fake. This last characteristic provides the method with very valuable features as it makes it less intrusive, more user friendly, faster and reduces its implementation costs.
systems man and cybernetics | 2010
Emanuele Maiorana; Patrizio Campisi; Julian Fierrez; Javier Ortega-Garcia; Alessandro Neri
Recent years have seen the rapid spread of biometric technologies for automatic people recognition. However, security and privacy issues still represent the main obstacles for the deployment of biometric-based authentication systems. In this paper, we propose an approach, which we refer to as BioConvolving, that is able to guarantee security and renewability to biometric templates. Specifically, we introduce a set of noninvertible transformations, which can be applied to any biometrics whose template can be represented by a set of sequences, in order to generate multiple transformed versions of the template. Once the transformation is performed, retrieving the original data from the transformed template is computationally as hard as random guessing. As a proof of concept, the proposed approach is applied to an on-line signature recognition system, where a hidden Markov model-based matching strategy is employed. The performance of a protected on-line signature recognition system employing the proposed BioConvolving approach is evaluated, both in terms of authentication rates and renewability capacity, using the MCYT signature database. The reported extensive set of experiments shows that protected and renewable biometric templates can be properly generated and used for recognition, at the expense of a slight degradation in authentication performance.
Pattern Analysis and Applications | 2010
Julian Fierrez; Javier Galbally; Javier Ortega-Garcia; Manuel Freire; Fernando Alonso-Fernandez; Daniel Ramos; Doroteo Torre Toledano; Joaquin Gonzalez-Rodriguez; Juan A. Sigüenza; J. Garrido-Salas; E. Anguiano; Guillermo González-de-Rivera; R. Ribalda; Marcos Faundez-Zanuy; Juan Antonio Ortega; Valentín Cardeñoso-Payo; A. Viloria; Carlos Vivaracho; Q.-I. Moro; J. J. Igarza; J. Sanchez; I. Hernaez; C. Orrite-Uruñuela; F. Martinez-Contreras; J. J. Gracia-Roche
A new multimodal biometric database, acquired in the framework of the BiosecurID project, is presented together with the description of the acquisition setup and protocol. The database includes eight unimodal biometric traits, namely: speech, iris, face (still images, videos of talking faces), handwritten signature and handwritten text (on-line dynamic signals, off-line scanned images), fingerprints (acquired with two different sensors), hand (palmprint, contour-geometry) and keystroking. The database comprises 400 subjects and presents features such as: realistic acquisition scenario, balanced gender and population distributions, availability of information about particular demographic groups (age, gender, handedness), acquisition of replay attacks for speech and keystroking, skilled forgeries for signatures, and compatibility with other existing databases. All these characteristics make it very useful in research and development of unimodal and multimodal biometric systems.
IEEE Access | 2014
Javier Galbally; Sébastien Marcel; Julian Fierrez
In recent decades, we have witnessed the evolution of biometric technology from the first pioneering works in face and voice recognition to the current state of development wherein a wide spectrum of highly accurate systems may be found, ranging from largely deployed modalities, such as fingerprint, face, or iris, to more marginal ones, such as signature or hand. This path of technological evolution has naturally led to a critical issue that has only started to be addressed recently: the resistance of this rapidly emerging technology to external attacks and, in particular, to spoofing. Spoofing, referred to by the term presentation attack in current standards, is a purely biometric vulnerability that is not shared with other IT security solutions. It refers to the ability to fool a biometric system into recognizing an illegitimate user as a genuine one by means of presenting a synthetic forged version of the original biometric trait to the sensor. The entire biometric community, including researchers, developers, standardizing bodies, and vendors, has thrown itself into the challenging task of proposing and developing efficient protection methods against this threat. The goal of this paper is to provide a comprehensive overview on the work that has been carried out over the last decade in the emerging field of antispoofing, with special attention to the mature and largely deployed face modality. The work covers theories, methodologies, state-of-the-art techniques, and evaluation databases and also aims at providing an outlook into the future of this very active field of research.
IEEE Transactions on Information Forensics and Security | 2009
Norman Poh; Thirimachos Bourlai; Josef Kittler; Lorene Allano; Fernando Alonso-Fernandez; Onkar Ambekar; John H. Baker; Bernadette Dorizzi; Omolara Fatukasi; Julian Fierrez; Harald Ganster; Javier Ortega-Garcia; Donald E. Maurer; Albert Ali Salah; Tobias Scheidat; Claus Vielhauer
Automatically verifying the identity of a person by means of biometrics (e.g., face and fingerprint) is an important application in our day-to-day activities such as accessing banking services and security control in airports. To increase the system reliability, several biometric devices are often used. Such a combined system is known as a multimodal biometric system. This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign organized by the University of Surrey, involving face, fingerprint, and iris biometrics for person authentication, targeting the application of physical access control in a medium-size establishment with some 500 persons. While multimodal biometrics is a well-investigated subject in the literature, there exists no benchmark for a fusion algorithm comparison. Working towards this goal, we designed two sets of experiments: quality-dependent and cost-sensitive evaluation. The quality-dependent evaluation aims at assessing how well fusion algorithms can perform under changing quality of raw biometric images principally due to change of devices. The cost-sensitive evaluation, on the other hand, investigates how well a fusion algorithm can perform given restricted computation and in the presence of software and hardware failures, resulting in errors such as failure-to-acquire and failure-to-match. Since multiple capturing devices are available, a fusion algorithm should be able to handle this nonideal but nevertheless realistic scenario. In both evaluations, each fusion algorithm is provided with scores from each biometric comparison subsystem as well as the quality measures of both the template and the query data. The response to the call of the evaluation campaign proved very encouraging, with the submission of 22 fusion systems. To the best of our knowledge, this campaign is the first attempt to benchmark quality-based multimodal fusion algorithms. In the presence of changing image quality which may be due to a change of acquisition devices and/or device capturing configurations, we observe that the top performing fusion algorithms are those that exploit automatically derived quality measurements. Our evaluation also suggests that while using all the available biometric sensors can definitely increase the fusion performance, this comes at the expense of increased cost in terms of acquisition time, computation time, the physical cost of hardware, and its maintenance cost. As demonstrated in our experiments, a promising solution which minimizes the composite cost is sequential fusion, where a fusion algorithm sequentially uses match scores until a desired confidence is reached, or until all the match scores are exhausted, before outputting the final combined score.