Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian Gough is active.

Publication


Featured researches published by Julian Gough.


Nucleic Acids Research | 2009

InterPro: the integrative protein signature database

Sarah Hunter; Rolf Apweiler; Teresa K. Attwood; Amos Marc Bairoch; Alex Bateman; David Binns; Peer Bork; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Aurélie Laugraud; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Jaina Mistry; Alex L. Mitchell; Nicola Mulder; Darren A. Natale; Christine A. Orengo; Antony F. Quinn; Jeremy D. Selengut

The InterPro database (http://www.ebi.ac.uk/interpro/) integrates together predictive models or ‘signatures’ representing protein domains, families and functional sites from multiple, diverse source databases: Gene3D, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY and TIGRFAMs. Integration is performed manually and approximately half of the total ∼58 000 signatures available in the source databases belong to an InterPro entry. Recently, we have started to also display the remaining un-integrated signatures via our web interface. Other developments include the provision of non-signature data, such as structural data, in new XML files on our FTP site, as well as the inclusion of matchless UniProtKB proteins in the existing match XML files. The web interface has been extended and now links out to the ADAN predicted protein–protein interaction database and the SPICE and Dasty viewers. The latest public release (v18.0) covers 79.8% of UniProtKB (v14.1) and consists of 16 549 entries. InterPro data may be accessed either via the web address above, via web services, by downloading files by anonymous FTP or by using the InterProScan search software (http://www.ebi.ac.uk/Tools/InterProScan/).


Nucleic Acids Research | 2012

InterPro in 2011: new developments in the family and domain prediction database

Sarah Hunter; P. D. Jones; Alex L. Mitchell; Rolf Apweiler; Teresa K. Attwood; Alex Bateman; Thomas Bernard; David Binns; Peer Bork; Sarah W. Burge; Edouard de Castro; Penny Coggill; Matthew Corbett; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Matthew Fraser; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Conor McMenamin

InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.


Nucleic Acids Research | 2015

The InterPro protein families database: the classification resource after 15 years

Alex L. Mitchell; Hsin-Yu Chang; Louise Daugherty; Matthew Fraser; Sarah Hunter; Rodrigo Lopez; Craig McAnulla; Conor McMenamin; Gift Nuka; Sebastien Pesseat; Amaia Sangrador-Vegas; Maxim Scheremetjew; Claudia Rato; Siew-Yit Yong; Alex Bateman; Marco Punta; Teresa K. Attwood; Christian J. A. Sigrist; Nicole Redaschi; Catherine Rivoire; Ioannis Xenarios; Daniel Kahn; Dominique Guyot; Peer Bork; Ivica Letunic; Julian Gough; Matt E. Oates; Daniel H. Haft; Hongzhan Huang; Darren A. Natale

The InterPro database (http://www.ebi.ac.uk/interpro/) is a freely available resource that can be used to classify sequences into protein families and to predict the presence of important domains and sites. Central to the InterPro database are predictive models, known as signatures, from a range of different protein family databases that have different biological focuses and use different methodological approaches to classify protein families and domains. InterPro integrates these signatures, capitalizing on the respective strengths of the individual databases, to produce a powerful protein classification resource. Here, we report on the status of InterPro as it enters its 15th year of operation, and give an overview of new developments with the database and its associated Web interfaces and software. In particular, the new domain architecture search tool is described and the process of mapping of Gene Ontology terms to InterPro is outlined. We also discuss the challenges faced by the resource given the explosive growth in sequence data in recent years. InterPro (version 48.0) contains 36 766 member database signatures integrated into 26 238 InterPro entries, an increase of over 3993 entries (5081 signatures), since 2012.


Nucleic Acids Research | 2004

InterPro, progress and status in 2005

Nicola Mulder; Rolf Apweiler; Teresa K. Attwood; Amos Marc Bairoch; Alex Bateman; David Binns; Paul Bradley; Peer Bork; Phillip Bucher; Lorenzo Cerutti; Richard R. Copley; Emmanuel Courcelle; Ujjwal Das; Richard Durbin; Wolfgang Fleischmann; Julian Gough; Daniel H. Haft; Nicola Harte; Nicolas Hulo; Daniel Kahn; Alexander Kanapin; Maria Krestyaninova; David M. Lonsdale; Rodrigo Lopez; Ivica Letunic; John Maslen; Jennifer McDowall; Alex L. Mitchell; Anastasia N. Nikolskaya; Sandra Orchard

InterPro, an integrated documentation resource of protein families, domains and functional sites, was created to integrate the major protein signature databases. Currently, it includes PROSITE, Pfam, PRINTS, ProDom, SMART, TIGRFAMs, PIRSF and SUPERFAMILY. Signatures are manually integrated into InterPro entries that are curated to provide biological and functional information. Annotation is provided in an abstract, Gene Ontology mapping and links to specialized databases. New features of InterPro include extended protein match views, taxonomic range information and protein 3D structure data. One of the new match views is the InterPro Domain Architecture view, which shows the domain composition of protein matches. Two new entry types were introduced to better describe InterPro entries: these are active site and binding site. PIRSF and the structure-based SUPERFAMILY are the latest member databases to join InterPro, and CATH and PANTHER are soon to be integrated. InterPro release 8.0 contains 11 007 entries, representing 2573 domains, 8166 families, 201 repeats, 26 active sites, 21 binding sites and 20 post-translational modification sites. InterPro covers over 78% of all proteins in the Swiss-Prot and TrEMBL components of UniProt. The database is available for text- and sequence-based searches via a webserver (http://www.ebi.ac.uk/interpro), and for download by anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).


Nucleic Acids Research | 2007

New developments in the InterPro database

Nicola Mulder; Rolf Apweiler; Teresa K. Attwood; Amos Marc Bairoch; Alex Bateman; David Binns; Peer Bork; Virginie Buillard; Lorenzo Cerutti; Richard R. Copley; Emmanuel Courcelle; Ujjwal Das; Louise Daugherty; Mark Dibley; Robert D. Finn; Wolfgang Fleischmann; Julian Gough; Daniel H. Haft; Nicolas Hulo; Sarah Hunter; Daniel Kahn; Alexander Kanapin; Anish Kejariwal; Alberto Labarga; Petra S. Langendijk-Genevaux; David M. Lonsdale; Rodrigo Lopez; Ivica Letunic; John Maslen; Craig McAnulla

InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (), and for download by anonymous FTP (). The InterProScan search tool is now also available via a web service at .


Chemical Reviews | 2014

Classification of Intrinsically Disordered Regions and Proteins.

Robin van der Lee; Marija Buljan; Benjamin Lang; Robert J. Weatheritt; Gary W. Daughdrill; A. Keith Dunker; Monika Fuxreiter; Julian Gough; Joerg Gsponer; David Jones; Philip M. Kim; Richard W. Kriwacki; Christopher J. Oldfield; Rohit V. Pappu; Peter Tompa; Vladimir N. Uversky; Peter E. Wright; M. Madan Babu

1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.


Human Mutation | 2013

Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models

Hashem A. Shihab; Julian Gough; David Neil Cooper; Peter D. Stenson; Gary L. A. Barker; Keith J. Edwards; Ian N.M. Day; Tom R. Gaunt

The rate at which nonsynonymous single nucleotide polymorphisms (nsSNPs) are being identified in the human genome is increasing dramatically owing to advances in whole‐genome/whole‐exome sequencing technologies. Automated methods capable of accurately and reliably distinguishing between pathogenic and functionally neutral nsSNPs are therefore assuming ever‐increasing importance. Here, we describe the Functional Analysis Through Hidden Markov Models (FATHMM) software and server: a species‐independent method with optional species‐specific weightings for the prediction of the functional effects of protein missense variants. Using a model weighted for human mutations, we obtained performance accuracies that outperformed traditional prediction methods (i.e., SIFT, PolyPhen, and PANTHER) on two separate benchmarks. Furthermore, in one benchmark, we achieve performance accuracies that outperform current state‐of‐the‐art prediction methods (i.e., SNPs&GO and MutPred). We demonstrate that FATHMM can be efficiently applied to high‐throughput/large‐scale human and nonhuman genome sequencing projects with the added benefit of phenotypic outcome associations. To illustrate this, we evaluated nsSNPs in wheat (Triticum spp.) to identify some of the important genetic variants responsible for the phenotypic differences introduced by intense selection during domestication. A Web‐based implementation of FATHMM, including a high‐throughput batch facility and a downloadable standalone package, is available at http://fathmm.biocompute.org.uk.


Nucleic Acids Research | 2017

InterPro in 2017—beyond protein family and domain annotations

Robert D. Finn; Teresa K. Attwood; Patricia C. Babbitt; Alex Bateman; Peer Bork; Alan Bridge; Hsin Yu Chang; Zsuzsanna Dosztányi; Sara El-Gebali; Matthew Fraser; Julian Gough; David R Haft; Gemma L. Holliday; Hongzhan Huang; Xiaosong Huang; Ivica Letunic; Rodrigo Lopez; Shennan Lu; Huaiyu Mi; Jaina Mistry; Darren A. Natale; Marco Necci; Gift Nuka; Christine A. Orengo; Youngmi Park; Sebastien Pesseat; Damiano Piovesan; Simon Potter; Neil D. Rawlings; Nicole Redaschi

InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPros predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.


Nucleic Acids Research | 2009

SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny

Derek Wilson; Ralph Pethica; Yiduo Zhou; Charles Talbot; Christine Vogel; Cyrus Chothia; Julian Gough

SUPERFAMILY provides structural, functional and evolutionary information for proteins from all completely sequenced genomes, and large sequence collections such as UniProt. Protein domain assignments for over 900 genomes are included in the database, which can be accessed at http://supfam.org/. Hidden Markov models based on Structural Classification of Proteins (SCOP) domain definitions at the superfamily level are used to provide structural annotation. We recently produced a new model library based on SCOP 1.73. Family level assignments are also available. From the web site users can submit sequences for SCOP domain classification; search for keywords such as superfamilies, families, organism names, models and sequence identifiers; find over- and underrepresented families or superfamilies within a genome relative to other genomes or groups of genomes; compare domain architectures across selections of genomes and finally build multiple sequence alignments between Protein Data Bank (PDB), genomic and custom sequences. Recent extensions to the database include InterPro abstracts and Gene Ontology terms for superfamiles, taxonomic visualization of the distribution of families across the tree of life, searches for functionally similar domain architectures and phylogenetic trees. The database, models and associated scripts are available for download from the ftp site.


Journal of Bacteriology | 2006

A Database of Bacterial Lipoproteins (DOLOP) with Functional Assignments to Predicted Lipoproteins

M. Madan Babu; M. Leena Priya; A. Tamil Selvan; Julian Gough; L. Aravind; Krishnan Sankaran

Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.

Collaboration


Dive into the Julian Gough's collaboration.

Top Co-Authors

Avatar

Cyrus Chothia

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Hai Fang

University of Bristol

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen J. L. Rackham

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ralph Pethica

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Teichmann

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Bateman

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ivica Letunic

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge