Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian Haase is active.

Publication


Featured researches published by Julian Haase.


Nature Biotechnology | 2011

Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Zhijian Li; Franco J. Vizeacoumar; Sondra Bahr; Jingjing Li; Jonas Warringer; Frederick Vizeacoumar; Renqiang Min; Benjamin VanderSluis; Jeremy Bellay; Michael Devit; James A. Fleming; Andrew D. Stephens; Julian Haase; Zhen Yuan Lin; Anastasia Baryshnikova; Hong Lu; Zhun Yan; Ke Jin; Sarah L. Barker; Alessandro Datti; Guri Giaever; Corey Nislow; Chris Bulawa; Chad L. Myers; Michael Costanzo; Anne-Claude Gingras; Zhaolei Zhang; Anders Blomberg; Kerry Bloom; Brenda Andrews

Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.


Current Biology | 2008

Pericentric chromatin is organized into an intramolecular loop in mitosis.

Elaine Yeh; Julian Haase; Leocadia V. Paliulis; Ajit P. Joglekar; Lisa Bond; David C. Bouck; E. D. Salmon; Kerry Bloom

BACKGROUND Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration.


Cell | 2008

Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules

Melissa K. Gardner; David C. Bouck; Leocadia V. Paliulis; Janet B. Meehl; Eileen O'Toole; Julian Haase; Adelheid Soubry; Ajit P. Joglekar; Mark Winey; E. D. Salmon; Kerry Bloom; David J. Odde

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Journal of Cell Biology | 2011

Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring

Andrew D. Stephens; Julian Haase; Leandra Vicci; Russell M. Taylor; Kerry Bloom

During mitosis, spindle microtubule force is balanced by the combined activities of the cohesin and condensin SMC complexes and intramolecular pericentric chromatin loops.


Journal of Cell Biology | 2008

The microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle

Melissa K. Gardner; Julian Haase; Karthikeyan Mythreye; Jeffrey N. Molk; Marybeth Anderson; Ajit P. Joglekar; Eileen O'Toole; Mark Winey; E. D. Salmon; David J. Odde; Kerry Bloom

In budding yeast, the mitotic spindle is comprised of 32 kinetochore microtubules (kMTs) and ∼8 interpolar MTs (ipMTs). Upon anaphase onset, kMTs shorten to the pole, whereas ipMTs increase in length. Overlapping MTs are responsible for the maintenance of spindle integrity during anaphase. To dissect the requirements for anaphase spindle stability, we introduced a conditionally functional dicentric chromosome into yeast. When centromeres from the same sister chromatid attach to opposite poles, anaphase spindle elongation is delayed and a DNA breakage-fusion-bridge cycle ensues that is dependent on DNA repair proteins. We find that cell survival after dicentric chromosome activation requires the MT-binding proteins Kar3p, Bim1p, and Ase1p. In their absence, anaphase spindles are prone to collapse and buckle in the presence of a dicentric chromosome. Our analysis reveals the importance of Bim1p in maintaining a stable ipMT overlap zone by promoting polymerization of ipMTs during anaphase, whereas Kar3p contributes to spindle stability by cross-linking spindle MTs.


Review of Scientific Instruments | 2006

Thin-foil magnetic force system for high-numerical-aperture microscopy

Jason Fisher; Jeremy Cribb; Kalpit Desai; Leandra Vicci; B. Wilde; Kurtis Keller; Russell M. Taylor; Julian Haase; Kerry Bloom; E. Timothy O'Brien; Richard Superfine

Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 mum paramagnetic particle and 13 nN on a 4.5 mum paramagnetic particle, forces over the full 4pi sr, and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution (2.4 nm), high-bandwidth (10 kHz), long-range (100 mum xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function.


Molecular Biology of the Cell | 2009

Function and Assembly of DNA Looping, Clustering, and Microtubule Attachment Complexes within a Eukaryotic Kinetochore

Marybeth Anderson; Julian Haase; Elaine Yeh; Kerry Bloom

The kinetochore is a complex protein-DNA assembly that provides the mechanical linkage between microtubules and the centromere DNA of each chromosome. Centromere DNA in all eukaryotes is wrapped around a unique nucleosome that contains the histone H3 variant CENP-A (Cse4p in Saccharomyces cerevisiae). Here, we report that the inner kinetochore complex (CBF3) is required for pericentric DNA looping at the Cse4p-containing nucleosome. DNA within the pericentric loop occupies a spatially confined area that is radially displaced from the interpolar central spindle. Microtubule-binding kinetochore complexes are not involved in pericentric DNA looping but are required for the geometric organization of DNA loops around the spindle microtubules in metaphase. Thus, the mitotic segregation apparatus is a composite structure composed of kinetochore and interpolar microtubules, the kinetochore, and organized pericentric DNA loops. The linkage of microtubule-binding to centromere DNA-looping complexes positions the pericentric chromatin loops and stabilizes the dynamic properties of individual kinetochore complexes in mitosis.


Journal of Cell Biology | 2013

Pericentric chromatin loops function as a nonlinear spring in mitotic force balance

Andrew D. Stephens; Rachel A. Haggerty; Paula A. Vasquez; Leandra Vicci; Chloe E. Snider; Fu Shi; Cory Quammen; Christopher Mullins; Julian Haase; Russell M. Taylor; Jolien S. Verdaasdonk; Michael R. Falvo; Yuan Jin; M. Gregory Forest; Kerry Bloom

During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force.


Current Biology | 2012

Bub1 Kinase and Sgo1 Modulate Pericentric Chromatin in Response to Altered Microtubule Dynamics

Julian Haase; Andrew D. Stephens; Jolien S. Verdaasdonk; Elaine Yeh; Kerry Bloom

BACKGROUND Tension sensing of bioriented chromosomes is essential for the fidelity of chromosome segregation. The spindle assembly checkpoint (SAC) conveys lack of tension or attachment to the anaphase promoting complex. Components of the SAC (Bub1) phosphorylate histone H2A (S121) and recruit the protector of cohesin, Shugoshin (Sgo1), to the inner centromere. How the chromatin structural modifications of the inner centromere are integrated into the tension sensing mechanisms and the checkpoint are not known. RESULTS We have identified a Bub1/Sgo1-dependent structural change in the geometry and dynamics of kinetochores and the pericentric chromatin upon reduction of microtubule dynamics. The cluster of inner kinetochores contract, whereas the pericentric chromatin and cohesin that encircle spindle microtubules undergo a radial expansion. Despite its increased spatial distribution, the pericentric chromatin is less dynamic. The change in dynamics is due to histone H2A phosphorylation and Sgo1 recruitment to the pericentric chromatin, rather than microtubule dynamics. CONCLUSIONS Bub1 and Sgo1 act as a rheostat to regulate the chromatin spring and maintain force balance. Through histone H2A S121 phosphorylation and recruitment of Sgo1, Bub1 kinase softens the chromatin spring in response to changes in microtubule dynamics. The geometric alteration of all 16 kinetochores and pericentric chromatin reflect global changes in the pericentromeric region and provide mechanisms for mechanically amplifying damage at a single kinetochore microtubule.


Current Biology | 2013

A 3D Map of the Yeast Kinetochore Reveals the Presence of Core and Accessory Centromere-Specific Histone

Julian Haase; Prashant K. Mishra; Andrew D. Stephens; Rachel A. Haggerty; Cory Quammen; Russell M. Taylor; Elaine Yeh; Munira A. Basrai; Kerry Bloom

The budding yeast kinetochore is ~68 nm in length with a diameter slightly larger than a 25 nm microtubule. The kinetochores from the 16 chromosomes are organized in a stereotypic cluster encircling central spindle microtubules. Quantitative analysis of the inner kinetochore cluster (Cse4, COMA) reveals structural features not apparent in singly attached kinetochores. The cluster of Cse4-containing kinetochores is physically larger perpendicular to the spindle axis relative to the cluster of Ndc80 molecules. If there was a single Cse4 (molecule or nucleosome) at the kinetochore attached to each microtubule plus end, the cluster of Cse4 would appear geometrically identical to Ndc80. Thus, the structure of the inner kinetochore at the surface of the chromosomes remains unsolved. We have used point fluorescence microscopy and statistical probability maps to deduce the two-dimensional mean position of representative components of the yeast kinetochore relative to the mitotic spindle in metaphase. Comparison of the experimental images to three-dimensional architectures from convolution of mathematical models reveals a pool of Cse4 radially displaced from Cse4 at the kinetochore and kinetochore microtubule plus ends. The pool of displaced Cse4 can be experimentally depleted in mRNA processing pat1Δ or xrn1Δ mutants. The peripheral Cse4 molecules do not template outer kinetochore components. This study suggests an inner kinetochore plate at the centromere-microtubule interface in budding yeast and yields information on the number of Ndc80 molecules at the microtubule attachment site.

Collaboration


Dive into the Julian Haase's collaboration.

Top Co-Authors

Avatar

Kerry Bloom

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Stephens

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Russell M. Taylor

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elaine Yeh

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Cory Quammen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

E. D. Salmon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ajit P. Joglekar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chloe E. Snider

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jolien S. Verdaasdonk

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge