Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian M. Hibberd is active.

Publication


Featured researches published by Julian M. Hibberd.


Nature | 2002

Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants.

Julian M. Hibberd; W. Paul Quick

Most plants are known as C3 plants because the first product of photosynthetic CO2 fixation is a three-carbon compound. C4 plants, which use an alternative pathway in which the first product is a four-carbon compound, have evolved independently many times and are found in at least 18 families. In addition to differences in their biochemistry, photosynthetic organs of C4 plants show alterations in their anatomy and ultrastructure. Little is known about whether the biochemical or anatomical characteristics of C4 photosynthesis evolved first. Here we report that tobacco, a typical C3 plant, shows characteristics of C4 photosynthesis in cells of stems and petioles that surround the xylem and phloem, and that these cells are supplied with carbon for photosynthesis from the vascular system and not from stomata. These photosynthetic cells possess high activities of enzymes characteristic of C4 photosynthesis, which allow the decarboxylation of four-carbon organic acids from the xylem and phloem, thus releasing CO2 for photosynthesis. These biochemical characteristics of C4 photosynthesis in cells around the vascular bundles of stems of C3 plants might explain why C4 photosynthesis has evolved independently many times.


Current Opinion in Plant Biology | 2008

Using C4 photosynthesis to increase the yield of rice-rationale and feasibility.

Julian M. Hibberd; John E. Sheehy; Jane A. Langdale

90% of the worlds rice is grown and consumed in Asia, with each hectare of rice-producing land providing food for 27 people. By 2050, because of population growth and increasing urbanisation, each remaining hectare will have to feed at least 43 people. This means that yields must be increased by at least 50% over the next 40 years to prevent mass malnutrition for the 700 million Asians that currently rely on rice for more than 60% of their daily calorific intake. Since predictive models suggest that yield increases of this magnitude can only be achieved by improving photosynthesis, and because evolution has increased photosynthetic efficiency by 50% in the form of the C4 pathway, one solution is to generate C4 rice. However, this is an ambitious goal that requires proof of concept before any major investment of time and money. Here, we discuss approaches that should allow proof of concept to be tested.


The Plant Cell | 2001

Many Parallel Losses of infA from Chloroplast DNA during Angiosperm Evolution with Multiple Independent Transfers to the Nucleus

Ronny S. Millen; Richard G. Olmstead; Keith L. Adams; Jeffrey D. Palmer; Nga T. Lao; Laura Heggie; Tony A. Kavanagh; Julian M. Hibberd; John C. Gray; Clifford W. Morden; Patrick J. Calie; Lars S. Jermiin; Kenneth H. Wolfe

We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in ∼24 separate lineages of angiosperms, including almost all rosid species. In four species in which chloroplast infA is defunct, transferred and expressed copies of the gene were found in the nucleus, complete with putative chloroplast transit peptide sequences. The transit peptide sequences of the nuclear infA genes from soybean and Arabidopsis were shown to be functional by their ability to target green fluorescent protein to chloroplasts in vivo. Phylogenetic analysis of infA sequences and assessment of transit peptide homology indicate that the four nuclear infA genes are probably derived from four independent gene transfers from chloroplast to nuclear DNA during angiosperm evolution. Considering this and the many separate losses of infA from chloroplast DNA, the gene has probably been transferred many more times, making infA by far the most mobile chloroplast gene known in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Redesigning photosynthesis to sustainably meet global food and bioenergy demand

Donald R. Ort; Sabeeha S. Merchant; Jean Alric; Alice Barkan; Robert E. Blankenship; Ralph Bock; Roberta Croce; Maureen R. Hanson; Julian M. Hibberd; Stephen P. Long; Thomas A. Moore; James V. Moroney; Krishna K. Niyogi; Martin A. J. Parry; Pamela Peralta-Yahya; Roger C. Prince; Kevin E. Redding; Martin H. Spalding; Klaas J. van Wijk; Wim Vermaas; Susanne von Caemmerer; Andreas P. M. Weber; Todd O. Yeates; Joshua S. Yuan; Xin-Guang Zhu

The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.


Plant Physiology | 2011

An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species

Andrea Bräutigam; Kaisa Kajala; Julia Wullenweber; Manuel Sommer; David Gagneul; Katrin L. Weber; Kevin M. Carr; Udo Gowik; Janina Mass; Martin J. Lercher; Peter Westhoff; Julian M. Hibberd; Andreas P. M. Weber

C4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C3 and C4 leaves, and to identify candidates associated with the C4 pathway, we used massively parallel mRNA sequencing of closely related C3 (Cleome spinosa) and C4 (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C3 and C4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C4 leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C3 and C4 leaves differs, provides a blueprint for the NAD-malic enzyme C4 pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.


Annual Review of Plant Biology | 2010

The Regulation of Gene Expression Required for C4 Photosynthesis

Julian M. Hibberd; Sarah Covshoff

C(4) photosynthesis is normally associated with the compartmentation of photosynthesis between mesophyll (M) and bundle sheath (BS) cells. The mechanisms regulating the differential accumulation of photosynthesis proteins in these specialized cells are fundamental to our understanding of how C(4) photosynthesis operates. Cell-specific accumulation of proteins in M or BS can be mediated by posttranscriptional processes and translational efficiency as well as by differences in transcription. Individual genes are likely regulated at multiple levels. Although cis-elements have been associated with cell-specific expression in C(4) leaves, there has been little progress in identifying trans-factors. When C(4) photosynthesis genes from C(4) species are placed in closely related C(3) species, they are often expressed in a manner faithful to the C(4) cycle. Next-generation sequencing and comprehensive analysis of the extent to which genes from C(4) species are expressed in M or BS cells of C(3) plants should provide insight into how the C(4) pathway is regulated and evolved.


Nature Biotechnology | 1999

A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes.

Michael Knoblauch; Julian M. Hibberd; John C. Gray; Aart J. E. van Bel

A galinstan expansion femtosyringe enables femtoliter to attoliter samples to be introduced into prokaryotes and subcellular compartments of eukaryotes. The method uses heat-induced expansion of galinstan (a liquid metal alloy of gallium, indium, and tin) within a glass syringe to expel samples through a tip diameter of about 0.1 μm. The narrow tip inflicts less damage than conventional capillaries, and the heat-induced expansion of the galinstan allows fine control over the rate of injection. We demonstrate injection of Lucifer Yellow and Lucifer Yellow–dextran conjugates into cyanobacteria, and into nuclei and chloroplasts of higher organisms. Injection of a plasmid containing the bla gene into the cyanobacterium Phormidium laminosum resulted in transformed ampicillin-resistant cultures. Green fluorescent protein was expressed in attached leaves of tobacco and Vicia faba following injection of DNA cantaining its gene into individual chloroplasts.


Genome Research | 2016

TransRate: reference-free quality assessment of de novo transcriptome assemblies

Richard Smith-Unna; Chris Boursnell; Rob Patro; Julian M. Hibberd; Steven Kelly

TransRate is a tool for reference-free quality assessment of de novo transcriptome assemblies. Using only the sequenced reads and the assembly as input, we show that multiple common artifacts of de novo transcriptome assembly can be readily detected. These include chimeras, structural errors, incomplete assembly, and base errors. TransRate evaluates these errors to produce a diagnostic quality score for each contig, and these contig scores are integrated to evaluate whole assemblies. Thus, TransRate can be used for de novo assembly filtering and optimization as well as comparison of assemblies generated using different methods from the same input reads. Applying the method to a data set of 155 published de novo transcriptome assemblies, we deconstruct the contribution that assembly method, read length, read quantity, and read quality make to the accuracy of de novo transcriptome assemblies and reveal that variance in the quality of the input data explains 43% of the variance in the quality of published de novo transcriptome assemblies. Because TransRate is reference-free, it is suitable for assessment of assemblies of all types of RNA, including assemblies of long noncoding RNA, rRNA, mRNA, and mixed RNA samples.


PLOS ONE | 2012

Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes

Marc T. J. Johnson; Eric J. Carpenter; Zhijian Tian; R. Bruskiewich; Jason N. Burris; C. T. Carrigan; Mark W. Chase; N. D. Clarke; Sarah Covshoff; Claude W. dePamphilis; Patrick P. Edger; F. Goh; Sean W. Graham; Stephan Greiner; Julian M. Hibberd; Ingrid E. Jordon-Thaden; Toni M. Kutchan; Jim Leebens-Mack; Michael Melkonian; Nicholas W. Miles; H. Myburg; Jordan Patterson; J. C. Pires; Paula E. Ralph; Megan Rolf; Rowan F. Sage; Douglas E. Soltis; Pamela S. Soltis; Dennis W. Stevenson; Charles Neal Stewart

Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ≥1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers.


Journal of Experimental Botany | 2011

Strategies for engineering a two-celled C4 photosynthetic pathway into rice

Kaisa Kajala; Sarah Covshoff; Shanta Karki; Helen Woodfield; Ben J. Tolley; Mary Jaqueline A. Dionora; Reychelle Mogul; Abigail Mabilangan; Florence R. Danila; Julian M. Hibberd; William Paul Quick

Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.

Collaboration


Dive into the Julian M. Hibberd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Parsley

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Gray

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge