Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian Maller is active.

Publication


Featured researches published by Julian Maller.


American Journal of Human Genetics | 2007

PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses

Shaun Purcell; Benjamin M. Neale; Kathe Todd-Brown; Lori Thomas; Manuel A. Ferreira; David Bender; Julian Maller; Pamela Sklar; Paul I. W. de Bakker; Mark J. Daly; Pak Sham

Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.


Nature Genetics | 2008

Integrated detection and population-genetic analysis of SNPs and copy number variation

Steven A. McCarroll; Finny Kuruvilla; Joshua M. Korn; Simon Cawley; James Nemesh; Alec Wysoker; Michael H. Shapero; Paul I. W. de Bakker; Julian Maller; Andrew Kirby; Amanda L. Elliott; Melissa Parkin; Earl Hubbell; Teresa Webster; Rui Mei; James Veitch; Patrick J Collins; Robert E. Handsaker; Steve Lincoln; Marcia M. Nizzari; John E. Blume; Keith W. Jones; Rich Rava; Mark J. Daly; Stacey Gabriel; David Altshuler

Dissecting the genetic basis of disease risk requires measuring all forms of genetic variation, including SNPs and copy number variants (CNVs), and is enabled by accurate maps of their locations, frequencies and population-genetic properties. We designed a hybrid genotyping array (Affymetrix SNP 6.0) to simultaneously measure 906,600 SNPs and copy number at 1.8 million genomic locations. By characterizing 270 HapMap samples, we developed a map of human CNV (at 2-kb breakpoint resolution) informed by integer genotypes for 1,320 copy number polymorphisms (CNPs) that segregate at an allele frequency >1%. More than 80% of the sequence in previously reported CNV regions fell outside our estimated CNV boundaries, indicating that large (>100 kb) CNVs affect much less of the genome than initially reported. Approximately 80% of observed copy number differences between pairs of individuals were due to common CNPs with an allele frequency >5%, and more than 99% derived from inheritance rather than new mutation. Most common, diallelic CNPs were in strong linkage disequilibrium with SNPs, and most low-frequency CNVs segregated on specific SNP haplotypes.


Nature Genetics | 2007

Two independent alleles at 6q23 associated with risk of rheumatoid arthritis

Robert M. Plenge; Chris Cotsapas; Leela Davies; Alkes L. Price; Paul I. W. de Bakker; Julian Maller; Itsik Pe'er; Noël P. Burtt; Brendan Blumenstiel; Matt DeFelice; Melissa Parkin; Rachel Barry; Wendy Winslow; Claire Healy; Robert R. Graham; Benjamin M. Neale; Elena Izmailova; Ronenn Roubenoff; Alex Parker; Roberta Glass; Elizabeth W. Karlson; Nancy E. Maher; David A. Hafler; David M. Lee; Michael F. Seldin; Elaine F. Remmers; Annette Lee; Leonid Padyukov; Lars Alfredsson; Jonathan S. Coblyn

To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, ∼150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10−3, GWA scan; P < 10−6, replication; P = 10−9, combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 × 10−6 in WTCCC). We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.


Nature Genetics | 2007

Variation in complement factor 3 is associated with risk of age-related macular degeneration

Julian Maller; Jesen Fagerness; Robyn Reynolds; Benjamin M. Neale; Mark J. Daly; Johanna M. Seddon

The association of variants in complement factors H and B with age-related macular degeneration has led to more intense genetic and functional analysis of the complement pathway. We identify a nonsynonymous coding change in complement factor 3 that is strongly associated with risk of age-related macular degeneration in a large case-control sample.


Nature Genetics | 2006

Evaluating and improving power in whole-genome association studies using fixed marker sets

Itsik Pe'er; Paul I. W. de Bakker; Julian Maller; Roman Yelensky; David Altshuler; Mark J. Daly

Emerging technologies make it possible for the first time to genotype hundreds of thousands of SNPs simultaneously, enabling whole-genome association studies. Using empirical genotype data from the International HapMap Project, we evaluate the extent to which the sets of SNPs contained on three whole-genome genotyping arrays capture common SNPs across the genome, and we find that the majority of common SNPs are well captured by these products either directly or through linkage disequilibrium. We explore analytical strategies that use HapMap data to improve power of association studies conducted with these fixed sets of markers and show that limited inclusion of specific haplotype tests in association analysis can increase the fraction of common variants captured by 25–100%. Finally, we introduce a Bayesian approach to association analysis by weighting the likelihood of each statistical test to reflect the number of putative causal alleles to which it is correlated.


European Journal of Human Genetics | 2009

Variation near complement factor I is associated with risk of advanced AMD

Jesen Fagerness; Julian Maller; Benjamin M. Neale; Robyn Reynolds; Mark J. Daly; Johanna M. Seddon

A case–control association study for advanced age-related macular degeneration was conducted to explore several regions of interest identified by linkage. This analysis identified a single nucleotide polymorphism just 3′ of complement factor I on chromosome 4 showing significant association (P<10−7). Sequencing was performed on coding exons in linkage disequilibrium with the detected association. No obvious functional variation was discovered that could be the proximate cause of the association, suggesting a noncoding regulatory mechanism.


American Journal of Medical Genetics | 2008

Genome-Wide Association Scan of Quantitative Traits for Attention Deficit Hyperactivity Disorder Identifies Novel Associations and Confirms Candidate Gene Associations

Jessica Lasky-Su; Benjamin M. Neale; Barbara Franke; Richard Anney; Kaixin Zhou; Julian Maller; Alejandro Arias Vasquez; Wai Chen; Philip Asherson; Jan K. Buitelaar; Tobias Banaschewski; Richard P. Ebstein; Michael Gill; Ana Miranda; Fernando Mulas; Robert D. Oades; Herbert Roeyers; Aribert Rothenberger; Joseph A. Sergeant; Edmund Sonuga-Barke; Hans-Christoph Steinhausen; Eric Taylor; Mark J. Daly; Nan M. Laird; Christoph Lange; Stephen V. Faraone

Attention deficit hyperactivity disorder (ADHD) is a complex condition with environmental and genetic etiologies. Up to this point, research has identified genetic associations with candidate genes from known biological pathways. In order to identify novel ADHD susceptibility genes, 600,000 SNPs were genotyped in 958 ADHD proband‐parent trios. After applying data cleaning procedures we examined 429,981 autosomal SNPs in 909 family trios. We generated six quantitative phenotypes from 18 ADHD symptoms to be used in genome‐wide association analyses. With the PBAT screening algorithm, we identified 2 SNPs, rs6565113 and rs552655 that met the criteria for significance within a specified phenotype. These SNPs are located in intronic regions of genes CDH13 and GFOD1, respectively. CDH13 has been implicated previously in substance use disorders. We also evaluated the association of SNPs from a list of 37 ADHD candidate genes that was specified a priori. These findings, along with association P‐values with a magnitude less than 10−5, are discussed in this manuscript. Seventeen of these candidate genes had association P‐values lower then 0.01: SLC6A1, SLC9A9, HES1, ADRB2, HTR1E, DDC, ADRA1A, DBH, DRD2, BDNF, TPH2, HTR2A, SLC6A2, PER1, CHRNA4, SNAP25, and COMT. Among the candidate genes, SLC9A9 had the strongest overall associations with 58 association test P‐values lower than 0.01 and multiple association P‐values at a magnitude of 10−5 in this gene. In sum, these findings identify novel genetic associations at viable ADHD candidate genes and provide confirmatory evidence for associations at previous candidate genes. Replication of these results is necessary in order to confirm the proposed genetic variants for ADHD.


Investigative Ophthalmology & Visual Science | 2009

Prediction Model for Prevalence and Incidence of Advanced Age-Related Macular Degeneration Based on Genetic, Demographic, and Environmental Variables

Johanna M. Seddon; Robyn Reynolds; Julian Maller; Jesen Fagerness; Mark J. Daly; Bernard Rosner

PURPOSE The joint effects of genetic, ocular, and environmental variables were evaluated and predictive models for prevalence and incidence of AMD were assessed. METHODS Participants in the multicenter Age-Related Eye Disease Study (AREDS) were included in a prospective evaluation of 1446 individuals, of which 279 progressed to advanced AMD (geographic atrophy or neovascular disease) and 1167 did not progress during 6.3 years of follow-up. For prevalent AMD, 509 advanced cases were compared with 222 controls. Covariates for the incidence analysis included age, sex, education, smoking, body mass index (BMI), baseline AMD grade, and the AREDS vitamin-mineral treatment assignment. DNA specimens were evaluated for six variants in five genes related to AMD. Unconditional logistic regression analyses were performed for prevalent and incident advanced AMD. An algorithm was developed and receiver operating characteristic curves and C statistics were calculated to assess the predictive ability of risk scores to discriminate progressors from nonprogressors. RESULTS All genetic polymorphisms were independently related to prevalence of advanced AMD, controlling for genetic factors, smoking, BMI, and AREDS treatment. Multivariate odds ratios (ORs) were 3.5 (95% confidence interval [CI], 1.7-7.1) for CFH Y402H; 3.7 (95% CI, 1.6-8.4) for CFH rs1410996; 25.4 (95% CI, 8.6-75.1) for LOC387715 A69S (ARMS2); 0.3 (95% CI, 0.1-0.7) for C2 E318D; 0.3 (95% CI, 0.1-0.5) for CFB; and 3.6 (95% CI, 1.4-9.4) for C3 R102G, comparing the homozygous risk/protective genotypes to the referent genotypes. For incident AMD, all these variants except CFB were significantly related to progression to advanced AMD, after controlling for baseline AMD grade and other factors, with ORs from 1.8 to 4.0 for presence of two risk alleles and 0.4 for the protective allele. An interaction was seen between CFH402H and treatment, after controlling for all genotypes. Smoking was independently related to AMD, with a multiplicative joint effect with genotype on AMD risk. The C statistic for the full model with all variables was 0.831 for progression to advanced AMD. CONCLUSIONS Factors reflective of nature and nurture are independently related to prevalence and incidence of advanced AMD, with excellent predictive power.


American Journal of Medical Genetics | 2008

Genome-wide association scan of attention deficit hyperactivity disorder

Benjamin M. Neale; Jessica Lasky-Su; Richard Anney; Barbara Franke; Kaixin Zhou; Julian Maller; Alejandro Arias Vasquez; Philip Asherson; Wai Chen; Tobias Banaschewski; Jan K. Buitelaar; Richard P. Ebstein; Michael Gill; Ana Miranda; Robert D. Oades; Herbert Roeyers; Aribert Rothenberger; Joseph A. Sergeant; Hans-Christoph Steinhausen; Edmund Sonuga-Barke; Fernando Mulas; Eric Taylor; Nan M. Laird; Christoph Lange; Mark J. Daly; Stephen V. Faraone

Results of behavioral genetic and molecular genetic studies have converged to suggest that genes substantially contribute to the development of attention deficit/hyperactivity disorder (ADHD), a common disorder with an onset in childhood. Yet, despite numerous linkage and candidate gene studies, strongly consistent and replicable association has eluded detection. To search for ADHD susceptibility genes, we genotyped approximately 600,000 SNPs in 958 ADHD affected family trios. After cleaning the data, we analyzed 438,784 SNPs in 2,803 individuals comprising 909 complete trios using ADHD diagnosis as phenotype. We present the initial TDT findings as well as considerations for cleaning family‐based TDT data. None of the SNP association tests achieved genome‐wide significance, indicating that larger samples may be required to identify risk loci for ADHD. We additionally identify a systemic bias in family‐based association, and suggest that variable missing genotype rates may be the source of this bias.


Science | 2012

A Fine-Scale Chimpanzee Genetic Map from Population Sequencing

Adam Auton; Adi Fledel-Alon; Susanne P. Pfeifer; Oliver Venn; Laure Ségurel; Teresa Street; Ellen M. Leffler; Rory Bowden; Ivy Aneas; John Broxholme; Peter Humburg; Zamin Iqbal; Gerton Lunter; Julian Maller; Ryan D. Hernandez; Cord Melton; Aarti Venkat; Marcelo A. Nobrega; Ronald E. Bontrop; Simon Myers; Peter Donnelly; Molly Przeworski; Gil McVean

Going Ape Over Genetic Maps Recombination is an important process in generating diversity and producing selectively advantageous genetic combinations. Thus, changes in recombination hotspots may influence speciation. To investigate the variation in recombination processes in humans and their closest existing relatives, Auton et al. (p. 193, published online 15 March) prepared a fine-scale genetic map of the Western chimpanzee and compared it with that of humans. While rates of recombination are comparable between humans and chimpanzees, the locations and genetic motifs associated with recombination differ between the species. Chimpanzees show similar genetic recombination rates as humans but differ in the genomic regions involved. To study the evolution of recombination rates in apes, we developed methodology to construct a fine-scale genetic map from high-throughput sequence data from 10 Western chimpanzees, Pan troglodytes verus. Compared to the human genetic map, broad-scale recombination rates tend to be conserved, but with exceptions, particularly in regions of chromosomal rearrangements and around the site of ancestral fusion in human chromosome 2. At fine scales, chimpanzee recombination is dominated by hotspots, which show no overlap with those of humans even though rates are similarly elevated around CpG islands and decreased within genes. The hotspot-specifying protein PRDM9 shows extensive variation among Western chimpanzees, and there is little evidence that any sequence motifs are enriched in hotspots. The contrasting locations of hotspots provide a natural experiment, which demonstrates the impact of recombination on base composition.

Collaboration


Dive into the Julian Maller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge