Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian Ostrovsky is active.

Publication


Featured researches published by Julian Ostrovsky.


Nature Genetics | 2012

NMNAT1 mutations cause Leber congenital amaurosis.

Marni J. Falk; Qi Zhang; Eiko Nakamaru-Ogiso; Chitra Kannabiran; Zoë D. Fonseca-Kelly; Christina Chakarova; Isabelle Audo; Donna S. Mackay; Christina Zeitz; Arundhati Dev Borman; Magdalena Staniszewska; Rachna Shukla; Lakshmi Palavalli; Saddek Mohand-Said; Naushin Waseem; Subhadra Jalali; Juan C. Perin; Emily Place; Julian Ostrovsky; Rui Xiao; Shomi S. Bhattacharya; Mark Consugar; Andrew R. Webster; José-Alain Sahel; Anthony T. Moore; Eliot L. Berson; Qin Liu; Xiaowu Gai; Eric A. Pierce

Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss. Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD+) biosynthesis. Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA.


Mitochondrion | 2010

Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans.

Stephen D. Dingley; Erzsebet Polyak; Richard Lightfoot; Julian Ostrovsky; Meera Rao; Todd M. Greco; Harry Ischiropoulos; Marni J. Falk

Mitochondrial dysfunction and associated oxidant stress have been linked with numerous complex diseases and aging largely by in vitro determination of mitochondria oxidant production and scavenging. We applied targeted in vivo fluorescence analyses of mitochondria-dense pharyngeal tissue in Caenorhabditis elegans to better understand relative mitochondrial effects, particularly on matrix oxidant burden, of respiratory chain complex, MnSOD, and insulin receptor mutants displaying variable longevity. The data demonstrate significantly elevated in vivo matrix oxidant burden in the short-lived complex I mutant, gas-1(fc21), which was associated with limited superoxide scavenging capacity despite robust MnSOD induction, as well as decreased mitochondria content and membrane potential. Significantly increased MnSOD activity was associated with in vivo matrix oxidant levels similar to wild-type in the long-lived respiratory chain complex III mutant, isp-1(qm150). Yet, despite greater superoxide scavenging capacity in the complex III mutant than in the significantly longer-lived insulin receptor mutant, daf-2(e1368), only the former showed modest oxidative stress sensitivity. Furthermore, increased longevity was seen in MnSOD knockout mutants (sod-2(ok1030) and sod-2(gk257)) that had decreased MnSOD scavenging capacity and increased in vivo matrix oxidant burden. Thus, factors beside oxidant stress must underlie RC mutant longevity in C. elegans. This work highlights the utility of the C. elegans model as a tractable means to non-invasively monitor multi-dimensional in vivo consequences of primary mitochondrial dysfunction.


Embo Molecular Medicine | 2011

Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice

Marni J. Falk; Erzsebet Polyak; Zhe Zhang; Min Peng; Rhonda King; Jonathan S. Maltzman; Ezinne Y. Okwuego; Oksana Horyn; Eiko Nakamaru-Ogiso; Julian Ostrovsky; Letian X. Xie; Jia Yan Chen; Beth N. Marbois; Itzhak Nissim; Catherine F. Clarke; David L. Gasser

Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy‐like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high‐dose CoQ10 supplementation and uniquely restores CoQ9 content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator‐activated receptor (PPAR) pathway signaling. Probucols beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ9 content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy.


Human Molecular Genetics | 2015

Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease

Min Peng; Julian Ostrovsky; Young Joon Kwon; Erzsebet Polyak; Joseph Licata; Mai Tsukikawa; Jeffrey Thomas; Carolyn A. Felix; Rui Xiao; Zhe Zhang; David L. Gasser; Yair Argon; Marni J. Falk

Mitochondrial respiratory chain (RC) disease therapies directed at intra-mitochondrial pathology are largely ineffective. Recognizing that RC dysfunction invokes pronounced extra-mitochondrial transcriptional adaptations, particularly involving dysregulated translation, we hypothesized that translational dysregulation is itself contributing to the pathophysiology of RC disease. Here, we investigated the activities, and effects from direct inhibition, of a central translational regulator (mTORC1) and its downstream biological processes in diverse genetic and pharmacological models of RC disease. Our data identify novel mechanisms underlying the cellular pathogenesis of RC dysfunction, including the combined induction of proteotoxic stress, the ER stress response and autophagy. mTORC1 inhibition with rapamycin partially ameliorated renal disease in B6.Pdss2(kd/kd) mice with complexes I-III/II-III deficiencies, improved viability and mitochondrial physiology in gas-1(fc21) nematodes with complex I deficiency, and rescued viability across a variety of RC-inhibited human cells. Even more effective was probucol, a PPAR-activating anti-lipid drug that we show also inhibits mTORC1. However, directly inhibiting mTORC1-regulated downstream activities yielded the most pronounced and sustained benefit. Partial inhibition of translation by cycloheximide, or of autophagy by lithium chloride, rescued viability, preserved cellular respiratory capacity and induced mitochondrial translation and biogenesis. Cycloheximide also ameliorated proteotoxic stress via a uniquely selective reduction of cytosolic protein translation. RNAseq-based transcriptome profiling of treatment effects in gas-1(fc21) mutants provide further evidence that these therapies effectively restored altered translation and autophagy pathways toward that of wild-type animals. Overall, partially inhibiting cytosolic translation and autophagy offer novel treatment strategies to improve health across the diverse array of human diseases whose pathogenesis involves RC dysfunction.


PLOS ONE | 2013

Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network

Zhe Zhang; Mai Tsukikawa; Min Peng; Erzsebet Polyak; Eiko Nakamaru-Ogiso; Julian Ostrovsky; Shana E. McCormack; Emily Place; Colleen Clarke; Gail Reiner; Elizabeth M. McCormick; Eric Rappaport; Richard H. Haas; Joseph A. Baur; Marni J. Falk

Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease.


Mitochondrion | 2015

Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans

Shana E. McCormack; Erzsebet Polyak; Julian Ostrovsky; Stephen D. Dingley; Meera Rao; Young Joon Kwon; Rui Xiao; Zhe Zhang; Eiko Nakamaru-Ogiso; Marni J. Falk

Mitochondrial respiratory chain (RC) diseases are highly morbid multi-systemic conditions for which few effective therapies exist. Given the essential role of sirtuin and PPAR signaling in mediating both mitochondrial physiology and the cellular response to metabolic stress in RC complex I (CI) disease, we postulated that drugs that alter these signaling pathways either directly (resveratrol for sirtuin, rosiglitazone for PPARγ, fenofibrate for PPARα), or indirectly by increasing NAD(+) availability (nicotinic acid), might offer effective treatment strategies for primary RC disease. Integrated effects of targeting these cellular signaling pathways on animal lifespan and multi-dimensional in vivo parameters were studied in gas-1(fc21) relative to wild-type (N2 Bristol) worms. Specifically, animal lifespan, transcriptome profiles, mitochondrial oxidant burden, mitochondrial membrane potential, mitochondrial content, amino acid profiles, stable isotope-based intermediary metabolic flux, and total nematode NADH and NAD(+) concentrations were compared. Shortened gas-1(fc21) mutant lifespan was rescued with either resveratrol or nicotinic acid, regardless of whether treatments were begun at the early larval stage or in young adulthood. Rosiglitazone administration beginning in young adult stage animals also rescued lifespan. All drug treatments reversed the most significant transcriptome alterations at the biochemical pathway level relative to untreated gas-1(fc21) animals. Interestingly, increased mitochondrial oxidant burden in gas-1(fc21) was reduced with nicotinic acid but exacerbated significantly by resveratrol and modestly by fenofibrate, with little change by rosiglitazone treatment. In contrast, the reduced mitochondrial membrane potential of mutant worms was further decreased by nicotinic acid but restored by either resveratrol, rosiglitazone, or fenofibrate. Using a novel HPLC assay, we discovered that gas-1(fc21) worms have significant deficiencies of NAD(+) and NADH. Whereas resveratrol restored concentrations of both metabolites, nicotinic acid only restored NADH. Characteristic branched chain amino acid elevations in gas-1(fc21) animals were normalized completely by nicotinic acid and largely by resveratrol, but not by either rosiglitazone or fenofibrate. We developed a visualization system to enable objective integration of these multi-faceted physiologic endpoints, an approach that will likely be useful to apply in future drug treatment studies in human patients with mitochondrial disease. Overall, these data demonstrate that direct or indirect pharmacologic restoration of altered sirtuin and PPAR signaling can yield significant health and longevity benefits, although by divergent bioenergetic mechanism(s), in a nematode model of mitochondrial RC complex I disease. Thus, these animal model studies introduce important, integrated insights that may ultimately yield rational treatment strategies for human RC disease.


Molecular Genetics and Metabolism | 2014

In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans

Samantha Schrier Vergano; Meera Rao; Shana E. McCormack; Julian Ostrovsky; Colleen Clarke; Judith Preston; Michael Bennett; Marc Yudkoff; Rui Xiao; Marni J. Falk

UNLABELLED Mitochondrial respiratory chain (RC) disease diagnosis is complicated both by an absence of biomarkers that sufficiently divulge all cases and limited capacity to quantify adverse effects across intermediary metabolism. We applied high performance liquid chromatography (HPLC) and mass spectrometry (MS) studies of stable-isotope based precursor-product relationships in the nematode, C. elegans, to interrogate in vivo differences in metabolic flux among distinct genetic models of primary RC defects and closely related metabolic disorders. METHODS C. elegans strains studied harbor single nuclear gene defects in complex I, II, or III RC subunits (gas-1, mev-1, isp-1); enzymes involved in coenzyme Q biosynthesis (clk-1), the tricarboxylic acid cycle (TCA, idh-1), or pyruvate metabolism (pdha-1); and central nodes of the nutrient-sensing signaling network that involve insulin response (daf-2) or the sirtuin homologue (sir-2.1). Synchronous populations of 2000 early larval stage worms were fed standard Escherichia coli on nematode growth media plates containing 1,6-(13)C2-glucose throughout their developmental period, with samples extracted on the first day of adult life in 4% perchloric acid with an internal standard. Quantitation of whole animal free amino acid concentrations and isotopic incorporation into amino and organic acids throughout development was performed in all strains by HPLC and isotope ratio MS, respectively. GC/MS analysis was also performed to quantify absolute isotopic incorporation in all molecular species of key TCA cycle intermediates in gas-1 and N2 adult worms. RESULTS Genetic mutations within different metabolic pathways displayed distinct metabolic profiles. RC complex I (gas-1) and III (isp-1) subunit mutants, together with the coenzyme Q biosynthetic mutant (clk-1), shared a similar amino acid profile of elevated alanine and decreased glutamate. The metabolic signature of the complex II mutant (mev-1) was distinct from that of the other RC mutants but resembled that of the TCA cycle mutant (idh-1) and both signaling mutants (daf-2 and sir-2.1). All branched chain amino acid levels were significantly increased in the complex I and III mutants but decreased in the PDH mutant (pdha-1). The RC complex I, coenzyme Q, TCA cycle, and PDH mutants shared significantly increased relative enrichment of lactate+1 and absolute concentration of alanine+1, while glutamate+1 enrichment was significantly decreased uniquely in the RC mutants. Relative intermediary flux analyses were suggestive of proximal TCA cycle disruption in idh-1, completely reduced TCA cycle flux in sir-2.1, and apparent distal TCA cycle alteration in daf-2. GC/MS analysis with universally-labeled (13)C-glucose in adult worms further showed significantly increased isotopic enrichment in lactate, citrate, and malate species in the complex I (gas-1) mutant. CONCLUSIONS Stable isotopic/mass spectrometric analysis can sensitively discriminate primary RC dysfunction from genetic deficiencies affecting either the TCA cycle or pyruvate metabolism. These data are further suggestive that metabolic flux analysis using stable isotopes may offer a robust means to discriminate and quantify the secondary effects of primary RC dysfunction across intermediary metabolism.


Journal of Molecular Biology | 2014

Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

Stephen D. Dingley; Erzsebet Polyak; Julian Ostrovsky; Satish Srinivasan; Icksoo Lee; Amy B. Rosenfeld; Mai Tsukikawa; Rui Xiao; Mary A. Selak; Joshua J. Coon; Alexander S. Hebert; Paul A. Grimsrud; Young Joon Kwon; David J. Pagliarini; Xiaowu Gai; Theodore G. Schurr; Maik Hüttemann; Eiko Nakamaru-Ogiso; Marni J. Falk

Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20°C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25°C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856>N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856>N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear-mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism.


Journal of Visualized Experiments | 2011

Stable isotopic profiling of intermediary metabolic flux in developing and adult stage Caenorhabditis elegans.

Marni J. Falk; Meera Rao; Julian Ostrovsky; Evgueni Daikhin; Ilana Nissim; Marc Yudkoff

Stable isotopic profiling has long permitted sensitive investigations of the metabolic consequences of genetic mutations and/or pharmacologic therapies in cellular and mammalian models. Here, we describe detailed methods to perform stable isotopic profiling of intermediary metabolism and metabolic flux in the nematode, Caenorhabditis elegans. Methods are described for profiling whole worm free amino acids, labeled carbon dioxide, labeled organic acids, and labeled amino acids in animals exposed to stable isotopes either from early development on nematode growth media agar plates or beginning as young adults while exposed to various pharmacologic treatments in liquid culture. Free amino acids are quantified by high performance liquid chromatography (HPLC) in whole worm aliquots extracted in 4% perchloric acid. Universally labeled 13C-glucose or 1,6-13C2-glucose is utilized as the stable isotopic precursor whose labeled carbon is traced by mass spectrometry in carbon dioxide (both atmospheric and dissolved) as well as in metabolites indicative of flux through glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Representative results are included to demonstrate effects of isotope exposure time, various bacterial clearing protocols, and alternative worm disruption methods in wild-type nematodes, as well as the relative extent of isotopic incorporation in mitochondrial complex III mutant worms (isp-1(qm150)) relative to wild-type worms. Application of stable isotopic profiling in living nematodes provides a novel capacity to investigate at the whole animal level real-time metabolic alterations that are caused by individual genetic disorders and/or pharmacologic therapies.


Mitochondrion | 2018

Mitochondrial function requires NGLY1

Jianping Kong; Min Peng; Julian Ostrovsky; Young Joon Kwon; Olga Oretsky; Elizabeth M. McCormick; Miao He; Yair Argon; Marni J. Falk

Mitochondrial respiratory chain (RC) diseases and congenital disorders of glycosylation (CDG) share extensive clinical overlap but are considered to have distinct cellular pathophysiology. Here, we demonstrate that an essential physiologic connection exists between cellular N-linked deglycosylation capacity and mitochondrial function. Following identification of altered muscle and liver mitochondrial amount and function in two children with a CDG subtype caused by NGLY1 deficiency, we evaluated mitochondrial physiology in NGLY1 disease human fibroblasts, and in NGLY1-knockout mouse embryonic fibroblasts and C. elegans. Across these distinct evolutionary models of cytosolic NGLY1 deficiency, a consistent disruption of mitochondrial physiology was present involving modestly reduced mitochondrial content with more pronounced impairment of mitochondrial membrane potential, increased mitochondrial matrix oxidant burden, and reduced cellular respiratory capacity. Lentiviral rescue restored NGLY1 expression and mitochondrial physiology in human and mouse fibroblasts, confirming that NGLY1 directly influences mitochondrial function. Overall, cellular deglycosylation capacity is shown to be a significant factor in mitochondrial RC disease pathogenesis across divergent evolutionary species.

Collaboration


Dive into the Julian Ostrovsky's collaboration.

Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Erzsebet Polyak

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Rui Xiao

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Meera Rao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Dingley

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mai Tsukikawa

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Min Peng

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Joon Kwon

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge