Julian Seago
Institute for Animal Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julian Seago.
PLOS ONE | 2008
Nicholas Juleff; Miriam Windsor; Elizabeth Reid; Julian Seago; Zhidong Zhang; Paul Monaghan; Ivan Morrison; Bryan Charleston
Foot-and-mouth disease virus (FMDV) is one of the most contagious viruses of animals and is recognised as the most important constraint to international trade in animals and animal products. Two fundamental problems remain to be understood before more effective control measures can be put in place. These problems are the FMDV “carrier state” and the short duration of immunity after vaccination which contrasts with prolonged immunity after natural infection. Here we show by laser capture microdissection in combination with quantitative real-time reverse transcription polymerase chain reaction, immunohistochemical analysis and corroborate by in situ hybridization that FMDV locates rapidly to, and is maintained in, the light zone of germinal centres following primary infection of naïve cattle. We propose that maintenance of non-replicating FMDV in these sites represents a source of persisting infectious virus and also contributes to the generation of long-lasting antibody responses against neutralising epitopes of the virus.
Journal of General Virology | 2008
Virginie Doceul; Bryan Charleston; Helen Crooke; Elizabeth Reid; Penny P. Powell; Julian Seago
Classical swine fever virus (CSFV) belongs to the genus Pestivirus and is the causative agent of classical swine fever, a haemorrhagic disease of pigs. The virus replicates in host cells without activating interferon (IFN) production and has been reported to be an antagonist of double-stranded RNA-induced apoptosis. The N-terminal protease (N(pro)) of CSFV is responsible for this evasion of the host innate immune response. In order to identify cellular proteins that interact with the N(pro) product of CSFV, a yeast two-hybrid screen of a human library was carried out, which identified IkappaBalpha, the inhibitor of NF-kappaB, a transcription factor involved in the control of apoptosis, the immune response and IFN production. The N(pro)-IkappaBalpha interaction was confirmed using yeast two-hybrid analysis and additional co-precipitation assays. It was also shown that N(pro) localizes to both the cytoplasmic and nuclear compartments in stably transfected cells and in CSFV-infected cells. Following stimulation by tumour necrosis factor alpha, PK-15 cell lines expressing N(pro) exhibited transient nuclear accumulation of pIkappaBalpha, but no effect of CSFV infection on IkappaBalpha localization or NF-kappaB p65 activation was observed.
Journal of Virology | 2011
Elizabeth Reid; Nicholas Juleff; Simon Gubbins; Helen Prentice; Julian Seago; Bryan Charleston
ABSTRACT Type I interferons (alpha/beta interferons [IFN-α/β]) are the main innate cytokines that are able to induce a cellular antiviral state, thereby limiting viral replication and disease pathology. Plasmacytoid dendritic cells (pDCs) play a crucial role in the control of viral infections, especially in response to viruses that have evolved mechanisms to block the type I IFN signal transduction pathway. Using density gradient separation and cell sorting, we have highly enriched a population of bovine cells capable of producing high levels of biologically active type I IFN. These cells represented less than 0.1% of the total lymphocyte population in blood, pseudoafferent lymph, and lymph nodes. Phenotypic analysis identified these cells as bovine pDCs (CD3− CD14− CD21− CD11c− NK− TCRδ− CD4+ MHC II+ CD45RB+ CD172a+ CD32+). High levels of type I IFN were generated by these cells in vitro in response to Toll-like receptor 9 (TLR-9) agonist CpG and foot-and-mouth disease virus (FMDV) immune complexes. In contrast, immune complexes formed with UV-inactivated FMDV or FMDV empty capsids failed to elicit a type I IFN response. Depletion of CD4 cells in vivo resulted in levels of type I IFN in serum early during FMDV infection that were significantly lower than those for control animals. In conclusion, pDCs interacting with immune-complexed virus are the major source of type I interferon production during acute FMDV infection in cattle.
Nature Structural & Molecular Biology | 2015
Abhay Kotecha; Julian Seago; Katherine Anne Scott; Alison Burman; Silvia Loureiro; Jingshan Ren; Claudine Porta; Helen Mary Ginn; Terry Jackson; Eva Perez-Martin; C. Alistair Siebert; Guntram Paul; Juha T. Huiskonen; Ian M. Jones; Robert M. Esnouf; Elizabeth E. Fry; Francois Frederick Maree; Bryan Charleston; David I. Stuart
Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
Journal of General Virology | 2012
Julian Seago; Terry Jackson; Claudia Doel; Elizabeth E. Fry; David I. Stuart; M.M. Harmsen; Bryan Charleston; Nicholas Juleff
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals with an almost-worldwide distribution. Conventional FMD vaccines consisting of chemically inactivated viruses have aided in the eradication of FMD from Europe and remain the main tool for control in endemic countries. Although significant steps have been made to improve the quality of vaccines, such as improved methods of antigen concentration and purification, manufacturing processes are technically demanding and expensive. Consequently, there is large variation in the quality of vaccines distributed in FMD-endemic countries compared with those manufactured for emergency use in FMD-free countries. Here, we have used reverse genetics to introduce haemagglutinin (HA) and FLAG tags into the foot-and-mouth disease virus (FMDV) capsid. HA- and FLAG-tagged FMDVs were infectious, with a plaque morphology similar to the non-tagged parental infectious copy virus and the field virus. The tagged viruses utilized integrin-mediated cell entry and retained the tag epitopes over serial passages. In addition, infectious HA- and FLAG-tagged FMDVs were readily purified from small-scale cultures using commercial antibodies. Tagged FMDV offers a feasible alternative to the current methods of vaccine concentration and purification, a potential to develop FMD vaccine conjugates and a unique tool for FMDV research.
Journal of General Virology | 2010
Helen L. Johns; Virginie Doceul; Helen E. Everett; Helen Crooke; Bryan Charleston; Julian Seago
The positive-stranded RNA genome of classical swine fever virus (CSFV) encodes 12 known proteins. The first protein to be translated is the N-terminal protease (N(pro)). N(pro) helps evade the innate interferon response by targeting interferon regulatory factor-3 for proteasomal degradation and also participates in the evasion of dsRNA-induced apoptosis. To elucidate the mechanisms by which N(pro) functions, we performed a yeast two-hybrid screen in which the anti-apoptotic protein HAX-1 was identified. The N(pro)-HAX-1 interaction was confirmed using co-precipitation assays. A dramatic redistribution of both N(pro) and HAX-1 was observed in co-transfected cells, as well as in transfected cells infected with wild-type CSFV, but not in cells infected with an N(pro)-deleted CSFV strain.
Journal of General Virology | 2013
Julian Seago; Nicholas Juleff; Katy Moffat; Stephen Berryman; John M. Christie; Bryan Charleston; Terry Jackson
Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed.
Journal of Virology | 2013
Stephen Berryman; Stuart Clark; Naresh K. Kakker; Rhiannon Silk; Julian Seago; Jemma Wadsworth; Kyle Chamberlain; Nick J. Knowles; Terry Jackson
ABSTRACT Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.
Journal of General Virology | 2010
Julian Seago; Stephen Goodbourn; Bryan Charleston
Classical swine fever is a notifiable disease of pigs. The causative agent, classical swine fever virus (CSFV), is highly contagious and causes mild to severe haemorrhagic disease depending on the virulence of the strain. The RNA genome of CSFV is translated as a single polyprotein that is processed to yield 12 proteins. Like other pestiviruses, the first protein to be translated is the N-terminal autoprotease termed N(pro). A novel pestiviral protein with no known cellular homologues, N(pro) antagonizes type I interferon (IFN) induction by binding and targeting the transcription factor IFN regulatory factor 3 (IRF-3) for ubiquitin-dependent proteasomal degradation. In this study, CSFV-infected PK-15 cells and stable cell lines were used to show that N(pro) is itself an unstable protein that is targeted for proteasomal degradation in a ubiquitin-dependent manner. In addition, N(pro) is not degraded as a direct consequence of its ability to interact with IRF-3 or to target IRF-3 for proteasomal degradation.
Journal of General Virology | 2014
Mohammed Habiela; Julian Seago; Eva Perez-Martin; Ryan Waters; Miriam Windsor; F.J. Salguero; J. L. N. Wood; Bryan Charleston; Nicholas Juleff
Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.