Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana C. Moraes is active.

Publication


Featured researches published by Juliana C. Moraes.


PLOS ONE | 2009

High-fat diet induces apoptosis of hypothalamic neurons.

Juliana C. Moraes; Andressa Coope; Joseane Morari; Dennys E. Cintra; Erika A. Roman; José Rodrigo Pauli; Talita Romanatto; José B.C. Carvalheira; Alexandre Leite Rodrigues de Oliveira; Mario J.A. Saad; Lício A. Velloso

Consumption of dietary fats is amongst the most important environmental factors leading to obesity. In rodents, the consumption of fat-rich diets blunts leptin and insulin anorexigenic signaling in the hypothalamus by a mechanism dependent on the in situ activation of inflammation. Since inflammatory signal transduction can lead to the activation of apoptotic signaling pathways, we evaluated the effect of high-fat feeding on the induction of apoptosis of hypothalamic cells. Here, we show that consumption of dietary fats induce apoptosis of neurons and a reduction of synaptic inputs in the arcuate nucleus and lateral hypothalamus. This effect is dependent upon diet composition, and not on caloric intake, since pair-feeding is not sufficient to reduce the expression of apoptotic markers. The presence of an intact TLR4 receptor, protects cells from further apoptotic signals. In diet-induced inflammation of the hypothalamus, TLR4 exerts a dual function, on one side activating pro-inflammatory pathways that play a central role in the development of resistance to leptin and insulin, and on the other side restraining further damage by controlling the apoptotic activity.


PLOS ONE | 2012

Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity.

Dennys E. Cintra; Eduardo R. Ropelle; Juliana C. Moraes; José Rodrigo Pauli; Joseane Morari; Cláudio T. De Souza; Renato Grimaldi; Marcela Stahl; José B.C. Carvalheira; Mario J.A. Saad; Lício A. Velloso

Background In experimental models, hypothalamic inflammation is an early and determining factor in the installation and progression of obesity. Pharmacological and gene-based approaches have proven efficient in restraining inflammation and correcting the obese phenotypes. However, the role of nutrients in the modulation of hypothalamic inflammation is unknown. Methodology/Principal Findings Here we show that, in a mouse model of diet-induced obesity, partial substitution of the fatty acid component of the diet by flax seed oil (rich in C18:3) or olive oil (rich in C18:1) corrects hypothalamic inflammation, hypothalamic and whole body insulin resistance, and body adiposity. In addition, upon icv injection in obese rats, both ω3 and ω9 pure fatty acids reduce spontaneous food intake and body mass gain. These effects are accompanied by the reversal of functional and molecular hypothalamic resistance to leptin/insulin and increased POMC and CART expressions. In addition, both, ω3 and ω9 fatty acids inhibit the AMPK/ACC pathway and increase CPT1 and SCD1 expression in the hypothalamus. Finally, acute hypothalamic injection of ω3 and ω9 fatty acids activate signal transduction through the recently identified GPR120 unsaturated fatty acid receptor. Conclusions/Significance Unsaturated fatty acids can act either as nutrients or directly in the hypothalamus, reverting diet-induced inflammation and reducing body adiposity. These data show that, in addition to pharmacological and genetic approaches, nutrients can also be attractive candidates for controlling hypothalamic inflammation in obesity.


PLOS Biology | 2010

IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition

Eduardo R. Ropelle; Marcelo B.S. Flores; Dennys E. Cintra; Guilherme Z. Rocha; José Rodrigo Pauli; Joseane Morari; Cláudio T. De Souza; Juliana C. Moraes; Patrícia O. Prada; Dioze Guadagnini; Rodrigo Miguel Marin; Alexandre G. Oliveira; Taize M. Augusto; Hernandes F. Carvalho; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira

Physical activity confers beneficial metabolic effects by inducing anti-inflammatory activity in the hypothalamus region of the brain in rodents, resulting in a reorganization of the set point of nutritional balance and reduced insulin and leptin resistance.


Journal of Biological Chemistry | 2009

Deletion of tumor necrosis factor-alpha-receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis

Talita Romanatto; Erika A. Roman; Ana Paula Arruda; Raphael G.P. Denis; Carina Solon; Marciane Milanski; Juliana C. Moraes; Maria Lúcia Bonfleur; Giovanna R. Degasperi; Paty K. Picardi; Sandro M. Hirabara; Antonio C. Boschero; Rui Curi; Lício A. Velloso

In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-α (TNF-α) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-α inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O2 consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O2 consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-α signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.


Journal of Hepatology | 2008

Interleukin-10 is a protective factor against diet-induced insulin resistance in liver☆

Dennys E. Cintra; José Rodrigo Pauli; Eliana P. Araújo; Juliana C. Moraes; Cláudio T. De Souza; Marciane Milanski; Joseane Morari; Alessandra Gambero; Mario J.A. Saad; Lício A. Velloso

BACKGROUND/AIMS The anti-inflammatory cytokine, interleukin-10 (IL-10), is known to exert a protective role in hepatic damage caused by viruses, alcohol, autoimmunity and a number of experimental aggressors. Recently, a protective role for IL-10 has also been proposed in diet-induced hepatic dysfunction. However, studies about the mechanisms involved in this process are controversial. The objective of this study was to evaluate the role of endogenous IL-10 in the development of hepatic insulin resistance, associated with diet-induced fatty liver disease. METHODS Male Swiss mice treated for eight weeks with a high-fat diet became diabetic and developed non-alcoholic fatty liver disease, which is characterized by increased hepatic fat deposition and liver infiltration by F4/80 positive cells. This was accompanied by an increased hepatic expression of TNF-alpha, IL-6, IL-1beta and IL-10, and by an impaired insulin signal transduction through the insulin receptor/IRS1-IRS2/PI3-kinase/Akt/FOXO1 signaling pathway. RESULTS Upon endogenous IL-10 inhibition for 5 days, using two distinct methods, a neutralizing anti-IL-10 antibody and an antisense oligonucleotide against IL-10, increased hepatic expression of the inflammatory markers TNF-alpha, IL-6, IL-1beta and F4/80 was observed. This was accompanied by a significant negative modulation of insulin signal transduction through insulin receptor/IRS1-IRS2/PI3-kinase/Akt/FOXO1, and by the stimulation of hepatic signaling proteins involved in gluconeogenesis and lipid synthesis. CONCLUSIONS Thus, in an animal model of diet-induced fatty liver disease, the inhibition of IL-10 promotes the increased expression of inflammatory cytokines, the worsening of insulin signaling and the activation of gluconeogenic and lipidogenic pathways.


Endocrinology | 2008

Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats

Paty K. Picardi; Vivian C. Calegari; Patrícia O. Prada; Juliana C. Moraes; Eliana P. Araújo; Maria Cristina Cintra Gomes Marcondes; Miriam Ueno; José B.C. Carvalheira; Lício A. Velloso; Mario J.A. Saad

Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B expression in discrete hypothalamic nuclei. We generated a selective, transient reduction in PTP1B by infusion of an antisense oligonucleotide designed to blunt the expression of PTP1B in rat hypothalamic areas surrounding the third ventricle in control and obese rats. The selective decrease in hypothalamic PTP1B resulted in decreased food intake, reduced body weight, reduced adiposity after high-fat feeding, improved leptin and insulin action and signaling in hypothalamus, and may also have a role in the improvement in glucose metabolism in diabetes-induced obese rats.


The Journal of Physiology | 2008

Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

José Rodrigo Pauli; Eduardo R. Ropelle; Dennys E. Cintra; Marco Antonio Carvalho-Filho; Juliana C. Moraes; Cláudio T. De Souza; Lício A. Velloso; José B.C. Carvalheira; Mario J.A. Saad

Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S‐nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high‐fat diet were subjected to swimming for two 3 h‐long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high‐fat diet led to an increase in the iNOS protein level and S‐nitrosation of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S‐nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet‐induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l‐N6‐(1‐iminoethyl)lysine; l‐NIL) simulates the effects of exercise on insulin action, insulin signalling and S‐nitrosation of IRβ, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet‐induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S‐nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet‐induced obese rats after an acute bout of exercise was accompanied by an increase in AMP‐activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity.


Peptides | 2007

TNF-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways

Talita Romanatto; Maristela Cesquini; Maria do Carmo Estanislau do Amaral; Erika A. Roman; Juliana C. Moraes; Marcio Alberto Torsoni; Ariovaldo P. Cruz-Neto; Lício A. Velloso

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-alpha promotes a reduction of 25% in 12h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-alpha increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NFkappaB, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-alpha activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-alpha, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus.


Diabetes | 2014

Fractalkine (CX3CL1) Is Involved in the Early Activation of Hypothalamic Inflammation in Experimental Obesity

Joseane Morari; Gabriel F. Anhê; Lucas F. Nascimento; Rodrigo Ferreira de Moura; Daniela S. Razolli; Carina Solon; Dioze Guadagnini; Gabriela Freitas Pereira de Souza; Alexandre H. Mattos; Natália Tobar; Celso Dario Ramos; Vinícius D. B. Pascoal; Mario J.A. Saad; Iscia Lopes-Cendes; Juliana C. Moraes; Lício A. Velloso

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow–derived cells or only in bone marrow–derived cells. We show that a functional TLR4 in bone marrow–derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow–derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.


The Journal of Physiology | 2009

Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats

Eduardo R. Ropelle; José Rodrigo Pauli; Patrícia O. Prada; Dennys E. Cintra; Guilherme Z. Rocha; Juliana C. Moraes; Marisa J. S. Frederico; Gabrielle da Luz; Ricardo A. Pinho; José B.C. Carvalheira; Lício A. Velloso; M. J. A. Saad; Cláudio T. De Souza

Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti‐related protein through the phosphatidylinositol‐3‐kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high‐fat diet impaired insulin‐induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1‐antisense oligonucleotide (Foxo1‐ASO) and evaluated the food consumption and weight gain in normal and diet‐induced obese (DIO) rats. Three days of Foxo1‐ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1‐ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1‐ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.

Collaboration


Dive into the Juliana C. Moraes's collaboration.

Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Dennys E. Cintra

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Mario J.A. Saad

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

José Rodrigo Pauli

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Eduardo R. Ropelle

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Cláudio T. De Souza

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Joseane Morari

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrícia O. Prada

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Talita Romanatto

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge