Juliana Carvalho-Tavares
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliana Carvalho-Tavares.
Journal of Neuroimmunology | 2005
Adriana Santos; Michele M. Barsante; Rosa Maria Esteves Arantes; Claude C. A. Bernard; Mauro M. Teixeira; Juliana Carvalho-Tavares
Experimental autoimmune encephalomyelitis (EAE) models multiple sclerosis (MS) and is characterized by marked mononuclear cell influx in the brain. Several studies have demonstrated a role for chemokines during EAE. It remains to be determined whether these mediators modulate EAE primarily by mediating leukocyte influx into the CNS or by modifying lymphocyte activation and/or trafficking into lymphoid organs. After induction of EAE with MOG(35-55), leukocyte recruitment peaked on day 14 and correlated with symptom onset, TNF-alpha production and production of CCL2 and CCL5. Levels of CXCL-10 and CCL3 were not different from control animals. Using intravital microscopy, we demonstrated that leukocyte rolling and adhesion also peaked at day 14. Treatment with anti-CCL2 or anti-CCL5 antibodies just prior to the intravital microscopy prevented leukocyte adhesion, but not rolling. Our data suggest that induction of leukocyte adhesion to the brain microvasculature is an important mechanism by which CCL2 and CCL5 participate in the pathophysiology of EAE.
Journal of Neuroinflammation | 2008
Adriana Santos; Ester Roffê; Rosa Me Arantes; Luiz Juliano; Jorge L. Pesquero; João Bosco Pesquero; Michael Bader; Mauro M. Teixeira; Juliana Carvalho-Tavares
BackgroundKinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG)35–55-induced EAE in mice.MethodsIn order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT) and kinin B2 receptor knockout (B2-/-) mice subjected to MOG35–55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA.ResultsClinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT.ConclusionOur results suggest that B2 receptors have two major effects in the control of EAE severity: (i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte recruitment and inflammatory lesions in the CNS.
Journal of Neuroimmunology | 2013
Danielle Bernardes; Onésia Cristina Oliveira-Lima; Thiago Vitarelli da Silva; Camila Cristina Fraga Faraco; Hércules Ribeiro Leite; Maria A. Juliano; D. M. dos Santos; John R. Bethea; Roberta Brambilla; Jacqueline M. Orian; Rosa Maria Esteves Arantes; Juliana Carvalho-Tavares
The interactions between a prior program of regular exercise and the development of experimental autoimmune encephalomyelitis (EAE)-mediated responses were evaluated. In the exercised EAE mice, although there was no effect on infiltrated cells, the cytokine and derived neurotrophic factor (BDNF) levels were altered, and the clinical score was attenuated. Although, the cytokine levels were decreased in the brain and increased in the spinal cord, BDNF was elevated in both compartments with a tendency of lesser demyelization volume in the spinal cord of the exercised EAE group compared with the unexercised.
Microvascular Research | 2013
Vanessa Estato; Nathalie Obadia; Juliana Carvalho-Tavares; Felipe Freitas; Patricia Alves Reis; Hugo C. Castro Faria Neto; Marcos Adriano Lessa; Eduardo Tibiriçá
We examined the functional and structural microcirculatory alterations in the brain, skeletal muscle and myocardium of non-diabetic spontaneously hypertensive rats (SHR) and diabetic SHR (D-SHR), as well as the effects of long-term treatment with the angiotensin AT1-receptor antagonist olmesartan and the angiotensin-converting enzyme inhibitor enalapril. Diabetes was experimentally induced by a combination of a high-fat diet with a single low dose of streptozotocin (35 mg/kg, intraperitoneal injection). D-SHR were orally administered with olmesartan (5 mg/kg/day), enalapril (10 mg/kg/day) or vehicle for 28 days, and compared with vehicle-treated non-diabetic SHR or normotensive non-diabetic Wistar-Kyoto rats. The cerebral and skeletal muscle functional capillary density of pentobarbital-anesthetized rats was assessed using intravital fluorescence videomicroscopy. Chronic treatment with olmesartan or enalapril significantly lowered blood pressure and reversed brain functional capillary rarefaction. Brain oxidative stress was reduced to non-diabetic control levels in animals treated with olmesartan or enalapril. Histochemical analysis of the structural capillary density showed that both olmesartan and enalapril increased the capillary-to-fiber ratio in skeletal muscle and the capillary-to-fiber volume density in the left ventricle. Olmesartan and enalapril also prevented collagen deposition and the increase in cardiomyocyte diameter in the left ventricle. Our results suggest that the association between hypertension and diabetes results in microvascular alterations in the brain, skeletal muscle and myocardium that can be prevented by chronic blockade of the renin-angiotensin system.
Acta Tropica | 2011
Norinne Lacerda-Queiroz; Onésia Cristina Oliveira Lima; Cláudia Martins Carneiro; Márcia Carvalho Vilela; Antônio Lúcio Teixeira; Andréa Teixeira Carvalho; Márcio Sobreira Silva Araújo; Olindo Assis Martins-Filho; Érika Martins Braga; Juliana Carvalho-Tavares
Malaria is second only to tuberculosis as the leading cause of morbidity and mortality as a consequence of a single infectious agent. Much of the pathology of malaria arises from the inappropriate or excessive immune response mounted by the host in an attempt to eliminate the parasite. We here report the inflammatory changes observed in the cerebral microvasculature of C57BL/6 and BALB/c mice that had been inoculated with Plasmodium berghei NK65, a lethal strain of rodent malaria. Although no neurological signs were observed in experimentally infected mice, inflammation of the cerebral microvasculature was clearly evident. Histopathological analysis demonstrated that alterations in cerebral tissue were more intense in infected C57Bl/6 mice than in infected BALB/c animals. Intravital microscopic examination of the cerebral microvasculature revealed increased leukocyte rolling and adhesion in pial venules of infected mice compared with non-infected animals. The extravasation of Evans blue dye into the cerebral parenchyma was also elevated in infected mice in comparison with their non-infected counterparts. Additionally, protein levels of TNF-α, MIG/CXCL9, MCP-1/CCL2, MIP-1α/CCL3 and RANTES/CCL5 were up-regulated in brain samples derived from infected C57Bl/6 mice. Taken together, the data reported here illustrate the complex strain-dependent relationships between leukocyte recruitment, blood brain barrier permeability and chemokine production.
Journal of Neurochemistry | 2016
Danielle Bernardes; Roberta Brambilla; Valerie Bracchi-Ricard; Shaffiat Karmally; Anna Dellarole; Juliana Carvalho-Tavares; John R. Bethea
Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long‐term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4+ T cells, and CD8+ T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.
Parasitology International | 2014
Adriana C. Soares; Ricardo N. Araujo; Juliana Carvalho-Tavares; Nelder F. Gontijo; Marcos H. Pereira
Hematophagous insects transmit many of the most dangerous parasitic diseases. The transmission usually occurs during hematophagy or just after as this is when the vector and the host are in contact. The contact time is determined by the feeding performance of the insect in each host. In triatomines, feeding performance interferes with both their life cycle and the vectorial competence to transmit the hemoflagellate Trypanosoma cruzi. Triatomine bugs are vessel feeders, obtaining their blood meals directly from the vessels (venules or arterioles) of their vertebrate hosts. The host blood intake rate is not constant during the feeding, and the sucking frequency of triatomines tends to be higher and to contain fewer interruptions in pigeons than in mice. To identify the difficulties encountered by triatomine bugs in obtaining blood meals from mouse skin, we used intravital microscopy techniques associated with electromyograms of the cibarial pump. To monitor the vibration of the cannulated vessels and the blood flow through the head of the insect during the engorgement phase, we introduced a novel method for image analysis. The mean number of vessels used during a Rhodnius prolixus blood meal was 3.4±1.2, and the insects fed more in venules (63%) than in arterioles (37%). An important increase in vascular permeability was observed throughout the feeding. Platelet aggregation, rolling and leukocyte adherence were analyzed on the venular endothelium, showing remarkable increases for some time following the R. prolixus feeding. The reduction in sucking frequency that was observed during insect feeding was likely due to the increased cibarial pump filling time. The monitoring of the vessel wall pulsation also permitted the registration of regurgitation-like movements during blood pumping, with these movements being recorded mostly during the second half of the feeding. The evaluation of blood flow through the head of the insect suggested that the regurgitation-like movements were not true regurgitations and were caused by abrupt difficulties in the function of the cibarial pump. The role of the platelet plugs and the changes in blood viscosity at the R. prolixus feeding site are discussed. The method introduced in the present study to analyze the images brings new insights into the interaction between hematophagous vectors and their hosts, reinforcing the importance of insect saliva throughout the feeding process.
Journal of Neurochemistry | 2012
Hércules Ribeiro Leite; Flávio Afonso Gonçalves Mourão; Luciana Estefani Drumond; Talita H. Ferreira-Vieira; Danielle Bernardes; Josiane F. Silva; Virginia S. Lemos; Márcio Flávio Dutra Moraes; Grace Schenatto Pereira; Juliana Carvalho-Tavares; André Ricardo Massensini
Although it is well known that regular exercise may promote neuroprotection, the mechanisms underlying this effect are still not fully understood. We investigated if swim training promotes neuroprotection by potentiating antioxidant pathways, thereby decreasing the effects of oxidative stress on glutamate and nitric oxide release. Male Wistar rats (n=36) were evenly randomized into a trained group (TRA) (5 days/week, 8 weeks, 30 min) and a sedentary group (SED). Forty‐eight hours after the last session of exercise, animals were killed and brain was collected for in vitro ischemia. Cortical slices were divided into two groups: a group in which oxidative stress was induced by oxygen and glucose deprivation (OGD), and a group of non‐deprived controls (nOGD). Interestingly, exercise by itself increased superoxide dismutase activity (nOGD, SED vs. TRA animals) with no effect on pro‐oxidative markers. In fact, TRA‐OGD slices showed lowered levels of lactate dehydrogenase when compared with SED‐OGD controls, reinforcing the idea that exercise affords a neuroprotective effect. We also demonstrated that exercise decreased glutamate and nitrite release as well as lipid membrane damage in the OGD cortical slices. Our data suggest that under conditions of metabolic stress, swim training prevents oxidative damage caused by glutamate and nitric oxide release.
Journal of Cellular Physiology | 2018
Patrick O. Azevedo; Isadora F. G. Sena; Julia P. Andreotti; Juliana Carvalho-Tavares; José C. Alves-Filho; Thiago M. Cunha; Fernando Q. Cunha; Akiva Mintz; Alexander Birbrair
Multiple sclerosis is a highly prevalent chronic demyelinating disease of the central nervous system. Remyelination is the major therapeutic goal for this disorder. The lack of detailed knowledge about the cellular and molecular mechanisms involved in myelination restricts the design of effective treatments. A recent study by using [De La Fuente et al. (2017) Cell Reports, 20(8): 1755‐1764] by using state‐of‐the‐art techniques, including pericyte‐deficient mice in combination with induced demyelination, reveal that pericytes participate in central nervous system regeneration. Strikingly, pericytes presence is essential for oligodendrocyte progenitors differentiation and myelin formation during remyelination in the brain. The emerging knowledge from this research will be important for the treatment of multiple sclerosis.
Thrombosis Research | 2013
Rogério Pereira Bilheiro; Ariadne Duarte Braga; Marcelo Limborço Filho; Juliana Carvalho-Tavares; Ubirajara Agero; Maria das Graças Carvalho; Eladio F. Sanchez; Carlos E. Salas; Miriam Teresa Paz Lopes
A group of cysteine-proteolytic enzymes from C. candamarcensis latex, designated as P1G10 displays pharmacological properties in animal models following various types of lesions. This enzyme fraction expresses in vitro fibrinolytic effect without need for plasminogen activation. Based on this evidence, we assessed by intravital microscopy the effect of P1G10 on recanalization of microvessels after thrombus induction in the ear of hairless mice. Video playback of intravital microscopic images allowed measurement of blood flow velocity (mm/s) during the experimental procedure. Groups treated with 5 or 7.5mg/Kg P1G10 showed thrombolysis between 7-15min, without vessel obstruction. Ex vivo experiments demonstrated that platelet activation by ADP is impaired in a dose dependent manner following treatment with P1G10. The P1G10 action on plasma coagulation also showed that prothrombin time (PT), thrombin time (TT) and activated partial thromboplastin time (aPTT, μg/uL) are increased in a dose dependent manner. In addition, P1G10 displayed fibrinogenolytic and fibrinolytic activities, both in a dose dependent manner. Each of these effects was suppressed by inhibition of the proteolytic activity of the fraction. The antithrombotic action of P1G10 can be explained by proteolytic cleavage of fibrinogen and fibrin, both key factors during formation of a stable thrombus. These results combined with prior evidence suggest that P1G10 has potential as thrombolytic agent.