Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana G. M. Soares is active.

Publication


Featured researches published by Juliana G. M. Soares.


The Journal of Neuroscience | 2007

Parallel Evolution of Cortical Areas Involved in Skilled Hand Use

Jeffrey Padberg; João G. Franca; Dylan F. Cooke; Juliana G. M. Soares; Marcello G. P. Rosa; Mario Fiorani; Ricardo Gattass; Leah Krubitzer

Dexterous hands, used to manipulate food, tools, and other objects, are one of the hallmarks of primate evolution. However, the neural substrate of fine manual control necessary for these behaviors remains unclear. Here, we describe the functional organization of parietal cortical areas 2 and 5 in the cebus monkey. Whereas other New World monkeys can be quite dexterous, and possess a poorly developed area 5, cebus monkeys are the only New World primate known to use a precision grip, and thus have an extended repertoire of manual behaviors. Unlike other New World Monkeys, but much like the macaque monkey, cebus monkeys possess a proprioceptive cortical area 2 and a well developed area 5, which is associated with motor planning and the generation of internal body coordinates necessary for visually guided reaching, grasping, and manipulation. The similarity of these fields in cebus monkeys and distantly related macaque monkeys with similar manual abilities indicates that the range of cortical organizations that can emerge in primates is constrained, and those that emerge are the result of highly conserved developmental mechanisms that shape the boundaries and topographic organizations of cortical areas.


Visual Neuroscience | 1993

Cortical afferents of visual area MT in the Cebus monkey: possible homologies between new and old world monkeys

Marcello G. P. Rosa; Juliana G. M. Soares; Mario Fiorani; Ricardo Gattass

Cortical projections to the middle temporal (MT) visual area were studied by injecting the retrogradely transported fluorescent tracer Fast Blue into MT in adult New World monkeys (Cebus apella). Injection sites were selected based on electrophysiological recordings, and covered eccentricities from 2-70 deg, in both the upper and lower visual fields. The position and laminar distribution of labeled cell bodies were correlated with myeloarchitectonic boundaries and displayed in flat reconstructions of the neocortex. Topographically organized projections were found to arise mainly from the primary, second, third, and fourth visual areas (V1, V2, V3, and V4). Coarsely topographic patterns were observed in transitional V4 (V4t), in the parieto-occipital and parieto-occipital medial areas (PO and POm), and in the temporal ventral posterior area (TVP). In addition, widespread or nontopographic label was found in visual areas of the superior temporal sulcus (medial superior temporal, MST, and fundus of superior temporal, FST), annectent gyrus (dorsointermediate area, DI; and dorsomedial area, DM), intraparietal sulcus (lateral intraparietal, LIP; posterior intraparietal, PIP; and ventral intraparietal, VIP), and in the frontal eye field (FEF). Label in PO, POm, and PIP was found only after injections in the representation of the peripheral visual field (> 10 deg), and label in V4 and FST was more extensive after injections in the central representation. The projections from V1 and V2 originated predominantly from neurons in supragranular layers, whereas those from V3, V4t, DM, DI, POm, and FEF consisted of intermixed patches with either supragranular or infragranular predominance. All of the other projections were predominantly infragranular. Invasion of area MST by the injection site led to the labeling of further pathways, including substantial projections from the dorsal prelunate area (DP) and from an ensemble of areas located along the medial wall of the hemisphere. In addition, weaker projections were observed from the parieto-occipital dorsal area (POd), area 7a, area prostriata, the posterior bank of the arcuate sulcus, and areas in the anterior part of the lateral sulcus. Despite the different nomenclatures and areal boundaries recognized by different models of simian cortical organization, the pattern of projections to area MT is remarkably similar among primates. Our results provide evidence for the existence of many homologous areas in the extrastriate visual cortex of New and Old World monkeys.


The Journal of Neuroscience | 2013

A conserved pattern of differential expansion of cortical areas in simian primates.

Tristan A. Chaplin; Hsin-Hao Yu; Juliana G. M. Soares; Ricardo Gattass; Marcello G. P. Rosa

The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.


Visual Neuroscience | 2001

Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys

Juliana G. M. Soares; Ricardo Gattass; Aglai P. B. Souza; Marcello G. P. Rosa; Mario Fiorani; Bruno Lobo Brandão

Based on cytoarchitectonic criteria, the primate pulvinar nucleus has been subdivided into medial (PM), lateral (PL), and inferior (PI) regions. However, these subdivisions show no correlation with those established by electrophysiological, immunocytochemical, or neuroanatomical tracer studies. In this work, we studied the connections of the pulvinar nucleus of Cebus monkey with visual areas V1, V2, V4, MT, and PO by means of retrograde fluorescent tracers injected into these areas. Based on the projection zones to cortical visual areas, the visual portion of the pulvinar of Cebus monkey was subdivided into three subregions: P1, P2, and P3, similar to those described in the macaque (Ungerleider et al., 1984). In Cebus, P1 includes the centrolateral portion of traditionally defined PI and adjacent portion of PL. P2 is located in the dorsal portion of PL and P3 includes the medial portion of PI and extends dorsally into adjacent PL and PM. In addition, we studied the histology of the pulvinar using multiple criteria, such as cytoarchitecture and myeloarchitecture; histochemistry for cytochrome oxidase, NADPH-diaphorase, and acetylcholinesterase; and immunocytochemistry for two calcium-binding proteins, calbindin and parvalbumin, and for a neurofilament recognized by the SMI-32 antibody. Some of these stains, mainly calbindin, showed additional subdivisions of the Cebus pulvinar, beyond the traditional PI, PL, and PM. Based on this immunohistochemical staining, the border of PI is moved dorsally above the brachium of the superior colliculus and PI can be subdivided in five regions (PI(P), PI(M), PI(C), PI(L), and PI(LS)). Regions P1, P2, and P3 defined based on efferent connections with cortical visual areas are not architectonically/neurochemically homogeneous. Rather they appear to consist of further chemoarchitectonic subdivisions. These distinct histochemical regions might be related to different functional modules of visual processing within one connectional area.


Experimental Brain Research | 1992

Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex ofCebus monkeys

Marcello G. P. Rosa; Ricardo Gattass; M. FioraniJr.; Juliana G. M. Soares

SummaryThe representation of the two eyes in striate cortex (V1) ofCebus monkeys was studied by electrophysiological single-unit recordings in normal animals and by morphometric analysis of the pattern of ocular dominance (OD) stripes, as revealed by cytochrome oxidase histochemistry in V1 flat-mounts of enucleated animals. Single-unit recordings revealed that the large majority of V1 neurons respond to the stimulation of either eye but are more strongly activated by one of them. As in other species of monkey, neurons with preference for the stimulation of the same eye are grouped in columns 300–400 µm wide, spanning all cortical layers. Monocular neurons are clustered in layer IVc, specially in its deeper half (IVc-beta), and constitute less than 10% of the population of other layers. Neurons with equal responses to each eye are more commonly found in layer V than elsewhere in V1. In the supragranular layers and in granular layer IVc-alpha neurons strongly dominated by one of the eyes tend to be broadly tuned for orientation, while binocularly balanced neurons tend to be sharply tuned for this parameter. No such correlation was detected in the infragranular layers, and most neurons in layer IVc-beta responded regardless of stimulus orientation. Ocular dominance stripes are present throughout most of V1 as long, parallel or bifurcating bands alternately dominated by the ipsi- or the contralateral eye. They are absent from the cortical representations of the blind spot and the monocular crescent. The domains of each eye occupy nearly equal portions of the surface of binocular V1, except for the representation of the periphery, where the contralateral eye has a larger domain, and a narrow strip along the border of V1 with V2, where either eye may predominate. The orderliness of the pattern of stripes and the relationship between stripe arrangement and the representation of the visual meridians vary with eccentricity and polar angle but follow the same rules in different animals. These results demonstrate that the laminar, columnar and topographic distribution of neurons with different degrees of OD in V1 is qualitatively similar in New- and Old World monkeys of similar sizes and suggest that common ancestry, rather than parallel evolution, may account for the OD phenotypes of contemporaneous simians.


Journal of Chemical Neuroanatomy | 2001

Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys.

Juliana G. M. Soares; Eliã P. Botelho; Ricardo Gattass

We studied the distribution of the calcium-binding proteins calbindin, parvalbumin and calretinin, in the superior colliculus and in the lateral geniculate nucleus of Cebus apella, a diurnal New World monkey. In the superior colliculus, these calcium-binding proteins show different distribution patterns throughout the layers. After reaction for calretinin one observes a heavy staining of the neuropil with few labeled cells in superficial layers, a greater number of large and medium-sized cells in the stratum griseum intermediale, and small neurons in deep layers. The reaction for calbindin revealed a strong staining of neuropil with a large number of small and well stained cells, mainly in the upper half of the stratum griseum superficiale. Intermediate layers were more weakly stained and depicted few neurons. There were few immunopositive cells and little neuropil staining in deep layers. The reaction for parvalbumin showed small and medium-sized neurons in the superficial layers, a predominance of large stellate cells in the stratum griseum intermediale, and medium-sized cells in the deep layers. In the lateral geniculate nucleus of Cebus, parvalbumin is found in the cells of both the P and M pathways, whereas calbindin is mainly found in the interlaminar and S layers, which are part of the third visual pathway. Calretinin was only found in cells located in layer S. This pattern is similar to that observed in Macaca, showing that these calcium-binding proteins reveal different components of the parallel visual pathways both in New and Old World monkeys.


Experimental Brain Research | 1991

A quantitative analysis of cytochrome oxidase-rich patches in the primary visual cortex of Cebus monkeys: topographic distribution and effects of late monocular enucleation

Marcello G. P. Rosa; Ricardo Gattass; Juliana G. M. Soares

SummaryWe have studied the tangential distribution of cytochrome oxidase (cytox)-rich patches in striate cortex of normal and monocularly enucleated Cebus apella monkeys. Patch spatial density and patch cross-sectional area were analysed in cytox-reacted tangential sections of flat-mounted preparations of V1. In the upper cortical layers of V1, and specially in the middle of layer III, the Cebus has well-delimited cytox-rich patches. Rows of patches are less conspicuous in Cebus than in Old World monkeys. The spatial density of patches is nearly constant throughout the binocular field representation in V1, with a mean value of 4 patches per mm2. In the monocular portions of V1, however, patch spatial density diminishes. In most cases, mean patch cross-sectional area decreases slightly towards the representation of the periphery in V1. However, patches in the representation of the monocular crescent tend to be larger than those in the adjacent binocular representation. The small variation of cytox patch topography with eccentricity contrasts with the large variation of cortical point-image size in V1. In monocularly enucleated monkeys, patches are larger and darker above and below the ocular dominance stripes of the remaining eye than in the alternate stripes. After long-term enucleation, the patches corresponding to the remaining eye columns appeared larger than in normal controls. In contrast, there is no difference in size between the patches located in the deprived and undeprived monocular crescent representations, although both patch and interpatch regions are darker staining in the latter. These results suggest the existence of competitive interactions which modify the cortical intrinsic organization even in adult monkeys.


Cerebral Cortex | 2014

Quantification of Early Stages of Cortical Reorganization of the Topographic Map of V1 Following Retinal Lesions in Monkeys

Eliã P. Botelho; Cecília Ceriatte; Juliana G. M. Soares; Ricardo Gattass; Mario Fiorani

We quantified the capacity for reorganization of the topographic representation of area V1 in adult monkeys. Bias-free automated mapping methods were used to delineate receptive fields (RFs) of an array of neuronal clusters prior to, and up to 6 h following retinal lesions. Monocular lesions caused a significant reorganization of the topographic map in this area, both inside and outside the cortical lesion projection zone (LPZ). Small flashed stimuli revealed responses up to 0.85 mm inside the boundaries of the LPZ, with RFs representing regions of undamaged retina immediately surrounding the lesion. In contrast, long moving bars that spanned the scotoma resulting from the lesion revealed responsive units up to 1.87 mm inside the LPZ, with RFs representing interpolated responses in this region. This reorganization is present immediately after monocular retinal lesioning. Both stimuli showed a similar and significant (5-fold) increase of the RF scatter in the LPZ, 0.56 mm (median), compared with the undamaged retina, 0.12 mm. Our results reveal an array of preexisting subthreshold functional connections of up to 2 mm in V1, which can be rapidly mobilized independently from the differential qualitative reorganization elicited by each stimulus.


Clinical and Experimental Pharmacology and Physiology | 2004

Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys.

Juliana G. M. Soares; Antonia Cinira M. Diogo; Mario Fiorani; A. P. B. Souza; Ricardo Gattass

1. In the present study, we investigated the influence of the pulvinar nucleus upon response properties of single cells in the second visual area (V2) of Cebus monkeys. The method used consisted of the inactivation of a portion of the lateral pulvinar by GABA injections while studying the response properties of cells in V2 at the same visuotopic location as that of the inactivation.


Frontiers in Systems Neuroscience | 2014

Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella)

David H. Reser; Marina O. Montibeller; Sherry Zhao; Jonathan M. H. Chan; Juliana G. M. Soares; Tristan A. Chaplin; Ricardo Gattass; Marcello G. P. Rosa

We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.

Collaboration


Dive into the Juliana G. M. Soares's collaboration.

Top Co-Authors

Avatar

Ricardo Gattass

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Bruss Lima

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Mario Fiorani

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliã P. Botelho

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Leslie G. Ungerleider

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Antonia Cinira M. Diogo

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra S. Pereira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

João C.B. Azzi

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge