Juliana S. Medeiros
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliana S. Medeiros.
Ecosphere | 2010
Paolo D'Odorico; Jose D. Fuentes; William T. Pockman; Scott L. Collins; Yufei He; Juliana S. Medeiros; Stephan DeWekker; Marcy E. Litvak
Woody plant encroachment is affecting vegetation composition in arid grasslands worldwide and has been associated with a number of environmental drivers and feedbacks. It has been argued that the relatively abrupt character (both in space and in time) of grassland-to-shrubland transitions observed in many drylands around the world might result from positive feedbacks in the underlying ecosystem dynamics. In the case of the Chihuahuan Desert, we show that one such feedback could emerge from interactions between vegetation and microclimate conditions. Shrub establishment modifies surface energy fluxes, causing an increase in nighttime air temperature, particularly during wintertime. The resulting change in winter air temperature regime is important because the northern limit of the dominant shrub in the northern Chihuahuan Desert, Larrea tridentata, presently occurs where minimum temperatures are sufficiently low to be a potential source of mortality. Using freezing responses from published studies in combination with observed temperature records, we predict that a small warming can yield meaningful changes in plant function and survival. Moreover, we also suggest that the effect of the change in air temperature on vegetation depends on whether plants experience drought during winter. Thus, in the Chihuahuan region a positive feedback exists between shrub encroachment and changes in microclimate conditions, with implications for the response of this ecosystem to regional changes in temperature and precipitation.
Plant Cell and Environment | 2011
Juliana S. Medeiros; William T. Pockman
Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k₁). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 °C compared to well-watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole-plant function following exposure to -15 °C; drought-exposed plants exhibited less cell death, greater leaf retention, higher k₁ and higher rates of gas exchange than well-watered plants. Both drought-exposed and well-watered plants experienced 100% mortality following exposure to -24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.
American Journal of Botany | 2007
Diane L. Marshall; Jerusha Reynolds; Nathan J. Abrahamson; Heather L. Simpson; Melanie G. Barnes; Juliana S. Medeiros; Sharon Walsh; Diana M. Oliveras; Joy J. Avritt
When more pollen is present on stigmas than needed to fertilize all ovules, selection among pollen grains may occur due to effects of both pollen donors and maternal plants. We asked whether increasing plant age and flower age, two changes in maternal condition, altered the pattern of seed paternity after mixed pollination. We also asked whether changes in seed paternity affected offspring success in an experimental garden. While flower age did not affect seed paternity, there was a dramatic shift in pollen donor performance as plants aged. These differences were seen in the offspring as well, where the offspring of one pollen donor, which sired more seeds on young plants, flowered earlier in the season, and the offspring of another pollen donor, which sired more seeds on old plants, flowered later in the season. Thus, change in maternal condition resulted in altered seed paternity, perhaps because the environment for pollen tube growth was different. The pattern of seed paternity and offspring performance suggests that pollen donors may show temporal specialization.
American Journal of Botany | 2014
Juliana S. Medeiros; William T. Pockman
PREMISE OF THE STUDY The impact of changing temperature regime on plant distributions may depend on the nature of physiological variation among populations. The arid-land genus Larrea spans habitats with a range of freezing frequency in North and South America. We hypothesized that variation in xylem anatomy among populations and species within this genus is driven by plasticity and trade-offs between safety from freeze-thaw embolism and water transport efficiency. METHODS We measured vessel density and diameter distributions to predict freeze-thaw embolism and water transport capacity for high and low latitude populations of three Larrea species grown in the field and a greenhouse common garden. KEY RESULTS Among field-grown L. divaricata, low latitude plants had larger mean vessel diameter and greater predicted freeze-thaw embolism, but higher water transport capacity compared with high latitude plants. Though high latitude L. tridentata and L. nitida had abundant smaller vessels, these plants also produced very large vessels and had semi ring-porous wood structure. Thus, their predicted embolism and water transport capacity were comparable to those of low latitude plants. Differences among field-grown and common-garden-grown plants demonstrate that plasticity contributes to population differentiation in xylem characters, though high latitude L. divaricata exhibited relatively lower plasticity. CONCLUSIONS Our results indicate that a trade-off between transport safety and efficiency contributes substantially to variation in xylem structure within the genus Larrea. In addition, we suggest that xylem plasticity may play a role in negotiating these trade-offs, with implications for responses to future climate change.
Sexual Plant Reproduction | 2010
Diane L. Marshall; Anna P. Tyler; Nathan J. Abrahamson; Joy J. Avritt; Melanie G. Barnes; Leah Larkin; Juliana S. Medeiros; Jerusha Reynolds; Marieken G. M. Shaner; Heather L. Simpson; Satya Maliakal-Witt
Although increases in atmospheric [CO2] are known to affect plant physiology, growth and reproduction, understanding of these effects is limited because most studies of reproductive consequences focus solely on female function. Therefore, we examined the effects of CO2 enrichment on male function in the annual Raphanus sativus. Pollen donors grown under elevated [CO2] initially sired a higher proportion of seeds per fruit than ambient [CO2]-grown plants when each was tested against two different standard competitors; however, by the end of the 5-month experiment, these pollen donors sired fewer seeds than ambient [CO2]-grown plants and produced a lower proportion of viable pollen grains. The results of this experiment confirm that elevated [CO2] can alter reproductive success. Additionally, the change in response to elevated [CO2] over time varied among pollen donor families; thus, changes in [CO2] could act as a selective force on this species.
New Phytologist | 2018
Juliana S. Medeiros; Frederic Lens; Hafiz Maherali; Steven Jansen
Shared ancestry among species and correlation between vessel diameter and plant height can obscure the mechanisms linking vessel diameter to current climate distributions of angiosperms. Because wood is complex, various traits may interact to influence vessel function. Specifically, pit vesturing (lignified cell wall protuberances associated with bordered pits) and perforation plate morphology could alter the relationships between vessel diameter, climate and plant height. Using phylogenetically informed analyses, we tested for associations between vessel diameter, climate and maximum plant height across angiosperm species with different pit vesturing (presence/absence) and perforation plate morphology (simple/scalariform and quantitative variation). We show significantly larger changes in vessel diameter and maximum plant height across climates for species with vestures and simple perforation plates, compared to nonvestured species and those with scalariform plates. We also found a significantly greater increase in height for a given increase in vessel diameter with lower percentage of scalariform plates. Our study provides novel insights into the evolution of angiosperm xylem by showing that vessel pit vesturing and perforation plate morphologies can modify relationships among xylem vessels, climate and height. Our findings highlight the complexity of xylem adaptations to climate, substantiating an integrative view of xylem function in the study of wood evolution.
Journal of Arid Environments | 2010
Juliana S. Medeiros; William T. Pockman
Journal of Arid Environments | 2015
Juliana S. Medeiros; Ashlee Begaye; David T. Hanson; Barry A. Logan; William T. Pockman
American Journal of Botany | 2017
Juliana S. Medeiros; Jean H. Burns; Jaynell Nicholson; Louisa Rogers; Oscar Valverde-Barrantes
Archive | 2010
Diane L. Marshall; Joy J. Avritt; Satya Maliakal-Witt; Juliana S. Medeiros; Marieken G. M. Shaner