Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana Schietti is active.

Publication


Featured researches published by Juliana Schietti.


Global Ecology and Biogeography | 2014

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore

Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests

Carlos A. Peres; Thaise Emilio; Juliana Schietti; Sylvain Jm Desmoulière; Taal Levi

Significance A standardized network of wildlife surveys across 166 Amazonian hunted and nonhunted forests, combined with basin-wide spatial modeling of central-place hunting pressure, reveal the degree to which arboreal frugivores have been extirpated by hunters and the spatial extent of overhunting for harvest-sensitive frugivore species across the Brazilian Amazon. Simulations based on data from 2,345 1-ha tree plots inventoried throughout Brazilian Amazonia then show widespread erosion of forest carbon stocks in the world’s largest tropical forest region. Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant–animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5–5.8% on average, with some losses as high as 26.5–37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.


PLOS ONE | 2012

Historical Human Footprint on Modern Tree Species Composition in the Purus-Madeira Interfluve, Central Amazonia

Carolina Levis; Priscila Souza; Juliana Schietti; Thaise Emilio; José Luiz Purri da Veiga Pinto; Charles R. Clement; Flávia R. C. Costa

Background Native Amazonian populations managed forest resources in numerous ways, often creating oligarchic forests dominated by useful trees. The scale and spatial distribution of forest modification beyond pre-Columbian settlements is still unknown, although recent studies propose that human impact away from rivers was minimal. We tested the hypothesis that past human management of the useful tree community decreases with distance from rivers. Methodology/Principal Findings In six sites, we inventoried trees and palms with DBH≥10 cm and collected soil for charcoal analysis; we also mapped archaeological evidence around the sites. To quantify forest manipulation, we measured the relative abundance, richness and basal area of useful trees and palms. We found a strong negative exponential relationship between forest manipulation and distance to large rivers. Plots located from 10 to 20 km from a main river had 20–40% useful arboreal species, plots between 20 and 40 km had 12–23%, plots more than 40 km had less than 15%. Soil charcoal abundance was high in the two sites closest to secondary rivers, suggesting past agricultural practices. The shortest distance between archaeological evidence and plots was found in sites near rivers. Conclusions/Significance These results strongly suggest that past forest manipulation was not limited to the pre-Columbian settlements along major rivers, but extended over interfluvial areas considered to be primary forest today. The sustainable use of Amazonian forests will be most effective if it considers the degree of past landscape domestication, as human-modified landscapes concentrate useful plants for human sustainable use and management today.


Plant Ecology & Diversity | 2014

Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest

Juliana Schietti; Thaise Emilio; Camilo Daleles Rennó; Debora Pignatari Drucker; Flávia R. C. Costa; Anselmo Nogueira; Fabricio Beggiato Baccaro; Fernando O.G. Figueiredo; Carolina V. Castilho; V. F. Kinupp; Jean-Louis Guillaumet; Ana Raquel M. Garcia; Albertina P. Lima; William E. Magnusson

Background: Plant composition changes with topography and edaphic gradients that correlate with soil-water and nutrient availability. Data on soil water for the Amazon Basin are scarce, limiting the possibility of distinguishing between soil and soil-water influences on plant composition. Aim: We tested a new proxy for water table depth, the terrain height above nearest drainage (HAND), as a predictor of composition in trees, lianas, palms, shrubs, and herbs and compared HAND to conventional measures of height above sea level (HASL) and horizontal distances from nearest drainage (HDND). Methods: Plant-species composition in 72 plots distributed across 64 km2 of lowland evergreen terra firme forest was summarised using non-metric multidimensional scaling (NMDS). NMDS scores were regressed against estimates of HAND, HASL and HDND. Results: Plant composition was highly correlated with the vertical distance from water table, capturing up to 82% of variation. All life forms showed highest turnover rates in the zone with seasonally water-saturated soils, which can extend 350 m from stream margins. Conclusions: Floristic composition is closely related to water table depth, and HAND appears to be the most robust available topographical metric of soil-water gradients. Brazilian conservation laws protecting 30-m-wide riparian buffers are likely to be too narrow to encompass the full zone of highest floristic turnover and may be ineffective in safeguarding riparian plant diversity.


Environmental Conservation | 2009

Deforestation and conservation in major watersheds of the Brazilian Amazon.

Ralph Trancoso; Arnaldo Carneiro Filho; Javier Tomasella; Juliana Schietti; Bruce R. Forsberg; Robert Pritchard Miller

been deforested, and to reduce further losses and preserve the important natural and cultural resources in this region, large conservation areas have been created by the Brazilian government. The present study analysed land cover and land use change in the major watersheds of the Brazilian Amazon, in order to evaluate the current balance between deforestation and conservation of natural areas in the region. The results show that watersheds draining the southern part of the basin have suffered the highest deforestation rates, with the largest losses (8.3‐20% of total basin area) occurring in the Madeira, Tapaj´ os, Xingu, Araguaia and Tocantins river basins. Most largewatershedsalreadyhavesignificantdeforestation in their headwaters, which can affect hydrological functions and ecological sustainability. The greatest allocation of land for conservation was encountered in the Trombetas, Xingu and Negro watersheds, where conservation areas occupied 92.5, 56.9 and 50.6% of the total basin, respectively. While extensive areas of the Amazon biome have been deforested, on the scale of large watersheds there is a positive balance between conservation areas and deforestation, and on average the area delimited by conservation areas is morethanthreetimeslargerthanthedeforestedareas. An analysis by subwatersheds, however, indicates that


Plant Ecology & Diversity | 2014

Soil physical conditions limit palm and tree basal area in Amazonian forests

Thaise Emilio; Carlos A. Quesada; Flávia R. C. Costa; Abel Monteagudo; A. M. Araujo; A. Pena-Cruz; A. Torres Lezama; Carolina V. Castilho; David A. Neill; E.M. Oblitas Mendoza; Esteban Álvarez; Eurídice N. Honorio; G.A. Parada; H. ter Steege; Hirma Ramírez-Angulo; Jérôme Chave; John Terborgh; Juliana Schietti; Marcos Silveira; María Cristina Peñuela-Mora; Michael Schwarz; Olaf S. Bánki; O.L. Philips; R. Thomas; R. Vasquez; Roel J. W. Brienen; Ted R. Feldpausch; Timothy J. Killeen; Timothy R. Baker; William E. Magnusson

Background: Trees and arborescent palms adopt different rooting strategies and responses to physical limitations imposed by soil structure, depth and anoxia. However, the implications of these differences for understanding variation in the relative abundance of these groups have not been explored. Aims: We analysed the relationship between soil physical constraints and tree and palm basal area to understand how the physical properties of soil are directly or indirectly related to the structure and physiognomy of lowland Amazonian forests. Methods: We analysed inventory data from 74 forest plots across Amazonia, from the RAINFOR and PPBio networks for which basal area, stand turnover rates and soil data were available. We related patterns of basal area to environmental variables in ordinary least squares and quantile regression models. Results: Soil physical properties predicted the upper limit for basal area of both trees and palms. This relationship was direct for palms but mediated by forest turnover rates for trees. Soil physical constraints alone explained up to 24% of palm basal area and, together with rainfall, up to 18% of tree basal area. Tree basal area was greatest in forests with lower turnover rates on well-structured soils, while palm basal area was high in weakly structured soils. Conclusions: Our results show that palms and trees are associated with different soil physical conditions. We suggest that adaptations of these life-forms drive their responses to soil structure, and thus shape the overall forest physiognomy of Amazonian forest vegetation.


Ecology Letters | 2015

Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography

Scott C. Stark; Brian J. Enquist; Scott R. Saleska; Veronika Leitold; Juliana Schietti; Marcos Longo; Luciana F. Alves; Plínio B. Camargo; Raimundo Cosme de Oliveira

Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change.


PLOS ONE | 2015

Structural Dynamics of Tropical Moist Forest Gaps.

M. O. Hunter; Michael Keller; Douglas C. Morton; Bruce D. Cook; Michael A. Lefsky; Mark J. Ducey; Scott R. Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.


Plant Ecology & Diversity | 2015

Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia

Demétrius Martins; Juliana Schietti; Ted R. Feldpausch; Flávio J. Luizão; Oliver L. Phillips; Ana Andrade; Carolina V. Castilho; Susan G. Laurance; Atila Alves de Oliveira; Iêda Leão do Amaral; José Julio de Toledo; Laynara F. Lugli; José Luiz Purri da Veiga Pinto; Erick M. Oblitas Mendoza; Carlos A. Quesada

Background: Coarse woody debris (CWD) is an essential component in tropical forest ecosystems and its quantity varies widely with forest types. Aims: Relationships among CWD, soil, forest structure and other environmental factors were analysed to understand the drivers of variation in CWD in forests on different soil types across central Amazonia. Methods: To estimate CWD stocks and density of dead wood debris, 75 permanent forest plots of 0.5 ha in size were assessed along a transect that spanned ca. 700 km in undisturbed forests from north of the Rio Negro to south of the Rio Amazonas. Soil physical properties were evaluated by digging 2-m-deep pits and by taking auger samples. Results: Soil physical properties were the best predictors of CWD stocks; 37% of its variation was explained by effective soil depth. CWD stocks had a two-fold variation across a gradient of physical soil constraints (i.e. effective soil depth, anoxia and soil structure). Average biomass per tree was related to physical soil constraints, which, in turn, had a strong relationship with local CWD stocks. Conclusions: Soil physical properties appear to control average biomass per tree (and through this affect forest structure and dynamics), which, in turn, is correlated with CWD production and stocks.


Journal of Ecology | 2016

Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central-southern Amazonia

Juliana Schietti; Demétrius Martins; Thaise Emilio; Priscila Souza; Carolina Levis; Fabricio Beggiato Baccaro; José Luiz Purri da Veiga Pinto; Gabriel M. Moulatlet; Scott C. Stark; Kelly Sarmento; R. Nazaré O. de Araújo; Flávia R. C. Costa; Jochen Schöngart; Carlos A. Quesada; Scott R. Saleska; Javier Tomasella; William E. Magnusson

A negative relationship between stand biomass and the density of stems is expected to develop during the self-thinning process in resource-limited forests; this leads to a large proportion of the total biomass occurring in large trees. Nevertheless, frequent disturbance regimes can reduce self-thinning and the accumulation of large trees. We investigated size-density relationships and the contribution of large trees (dbh ≥ 70 cm) to stand biomass in 55 1-ha plots along a 600 km transect in central-southern Amazonia. The effects of natural-disturbance gradients (frequency of storms and soil characteristics) and seasonality on forest-structure components (density of stems and mean individual mass) and stand biomass were examined. Contrary to self-thinning predictions, stand biomass increased in forests with higher stem densities. Large trees contained only an average of 5% of stand biomass, and half of the stand biomass was represented by small trees with diameters

Collaboration


Dive into the Juliana Schietti's collaboration.

Top Co-Authors

Avatar

Flávia R. C. Costa

Federal University of Amazonas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina V. Castilho

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott C. Stark

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge