Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana Schwaab is active.

Publication


Featured researches published by Juliana Schwaab.


Blood | 2011

Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV

Alice Fabarius; Armin Leitner; Andreas Hochhaus; Martin C. Müller; Benjamin Hanfstein; Claudia Haferlach; Gudrun Göhring; Brigitte Schlegelberger; Martine Jotterand; Andreas Reiter; Susanne Jung-Munkwitz; Ulrike Proetel; Juliana Schwaab; Wolf-Karsten Hofmann; Jörg Schubert; Hermann Einsele; Anthony D. Ho; Christiane Falge; Lothar Kanz; Andreas Neubauer; Michael Kneba; Frank Stegelmann; Michael Pfreundschuh; Cornelius F. Waller; Karsten Spiekermann; Michael Lauseker; Markus Pfirrmann; Joerg Hasford; Susanne Saussele; Rüdiger Hehlmann

The prognostic relevance of additional cytogenetic findings at diagnosis of chronic myeloid leukemia (CML) is unclear. The impact of additional cytogenetic findings at diagnosis on time to complete cytogenetic (CCR) and major molecular remission (MMR) and progression-free (PFS) and overall survival (OS) was analyzed using data from 1151 Philadelphia chromosome-positive (Ph(+)) CML patients randomized to the German CML Study IV. At diagnosis, 1003 of 1151 patients (87%) had standard t(9;22)(q34;q11) only, 69 patients (6.0%) had variant t(v;22), and 79 (6.9%) additional cytogenetic aberrations (ACAs). Of these, 38 patients (3.3%) lacked the Y chromosome (-Y) and 41 patients (3.6%) had ACAs except -Y; 16 of these (1.4%) were major route (second Philadelphia [Ph] chromosome, trisomy 8, isochromosome 17q, or trisomy 19) and 25 minor route (all other) ACAs. After a median observation time of 5.3 years for patients with t(9;22), t(v;22), -Y, minor- and major-route ACAs, the 5-year PFS was 90%, 81%, 88%, 96%, and 50%, and the 5-year OS was 92%, 87%, 91%, 96%, and 53%, respectively. In patients with major-route ACAs, the times to CCR and MMR were longer and PFS and OS were shorter (P < .001) than in patients with standard t(9;22). We conclude that major-route ACAs at diagnosis are associated with a negative impact on survival and signify progression to the accelerated phase and blast crisis.


Blood | 2013

Comprehensive mutational profiling in advanced systemic mastocytosis

Juliana Schwaab; Susanne Schnittger; Karl Sotlar; Christoph Walz; Alice Fabarius; Markus Pfirrmann; Alexander Kohlmann; Vera Grossmann; Manja Meggendorfer; Hans-Peter Horny; Peter Valent; Mohamad Jawhar; Martina Teichmann; Georgia Metzgeroth; Philipp Erben; Thomas Ernst; Andreas Hochhaus; Torsten Haferlach; Wolf-Karsten Hofmann; Nicholas C.P. Cross; Andreas Reiter

To explore mechanisms contributing to the clinical heterogeneity of systemic mastocytosis (SM) and to suboptimal responses to diverse therapies, we analyzed 39 KIT D816V mutated patients with indolent SM (n = 10), smoldering SM (n = 2), SM with associated clonal hematologic nonmast cell lineage disorder (SM-AHNMD, n = 5), and aggressive SM (n = 15) or mast cell leukemia (n = 7) with (n = 18) or without (n = 4) AHNMD for additional molecular aberrations. We applied next-generation sequencing to investigate ASXL1, CBL, IDH1/2, JAK2, KRAS, MLL-PTD, NPM1, NRAS, TP53, SRSF2, SF3B1, SETBP1, U2AF1 at mutational hotspot regions, and analyzed complete coding regions of EZH2, ETV6, RUNX1, and TET2. We identified additional molecular aberrations in 24/27 (89%) patients with advanced SM (SM-AHNMD, 5/5; aggressive SM/mast cell leukemia, 19/22) whereas only 3/12 (25%) indolent SM/smoldering SM patients carried one additional mutation each (U2AF1, SETBP1, CBL) (P < .001). Most frequently affected genes were TET2, SRSF2, ASXL1, CBL, and RUNX1. In advanced SM, 21/27 patients (78%) carried ≥3 mutations, and 11/27 patients (41%) exhibited ≥5 mutations. Overall survival was significantly shorter in patients with additional aberrations as compared to those with KIT D816V only (P = .019). We conclude that biology and prognosis in SM are related to the pattern of mutated genes that are acquired during disease evolution.


Leukemia | 2015

KIT mutation analysis in mast cell neoplasms: recommendations of the European Competence Network on Mastocytosis.

Michel Arock; Karl Sotlar; Cem Akin; Sigurd Broesby-Olsen; Gregor Hoermann; Luis Escribano; Thomas Kielsgaard Kristensen; Hanneke C. Kluin-Nelemans; Olivier Hermine; Patrice Dubreuil; Wolfgang R. Sperr; Karin Hartmann; Jason Gotlib; Nicholas C.P. Cross; Torsten Haferlach; Andrés C. García-Montero; Alberto Orfao; Juliana Schwaab; Massimo Triggiani; Hans-Peter Horny; Dean D. Metcalfe; Andreas Reiter; Peter Valent

Although acquired mutations in KIT are commonly detected in various categories of mastocytosis, the methodologies applied to detect and quantify the mutant type and allele burden in various cells and tissues are poorly defined. We here propose a consensus on methodologies used to detect KIT mutations in patients with mastocytosis at diagnosis and during follow-up with sufficient precision and sensitivity in daily practice. In addition, we provide recommendations for sampling and storage of diagnostic material as well as a robust diagnostic algorithm. Using highly sensitive assays, KIT D816V can be detected in peripheral blood leukocytes from most patients with systemic mastocytosis (SM) that is a major step forward in screening and SM diagnosis. In addition, the KIT D816V allele burden can be followed quantitatively during the natural course or during therapy. Our recommendations should greatly facilitate diagnostic and follow-up investigations in SM in daily practice as well as in clinical trials. In addition, the new tools and algorithms proposed should lead to a more effective screen, early diagnosis of SM and help to avoid unnecessary referrals.


Leukemia | 2016

Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis

Mohamad Jawhar; Juliana Schwaab; S Schnittger; Manja Meggendorfer; Markus Pfirrmann; Karl Sotlar; H.-P. Horny; Georgia Metzgeroth; Sebastian Kluger; Nicole Naumann; Claudia Haferlach; T Haferlach; Peter Valent; Wolf-Karsten Hofmann; A. Fabarius; Nicholas C.P. Cross; Andreas Reiter

Most patients with KIT D816V+ advanced systemic mastocytosis (SM) are characterized by somatic mutations in additional genes. We sought to clarify the prognostic impact of such mutations. Genotype and clinical characteristics of 70 multi-mutated KIT D816V+ advanced SM patients were included in univariate and multivariate analyses. The most frequently identified mutated genes were TET2 (n=33 of 70 patients), SRSF2 (n=30), ASXL1 (n=20), RUNX1 (n=16) and JAK2 (n=11). In univariate analysis, overall survival (OS) was adversely influenced by mutations in SRSF2 (P<0.0001), ASXL1 (P=0.002) and RUNX1 (P=0.03), but was not influenced by mutations in TET2 or JAK2. In multivariate analysis, SRSF2 and ASXL1 remained the most predictive adverse indicators concerning OS. Furthermore, we found that inferior OS and adverse clinical characteristics were significantly influenced by the number of mutated genes in the SRSF2/ASXL1/RUNX1 (S/A/R) panel (P<0.0001). In conclusion, the presence and number of mutated genes within the S/A/R panel are adversely associated with advanced disease and poor survival in KIT D816V+ SM. On the basis of these findings, inclusion of molecular markers should be considered in upcoming prognostic scoring systems for patients with SM.


Leukemia | 2015

Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event

Mohamad Jawhar; Juliana Schwaab; S Schnittger; Karl Sotlar; H.-P. Horny; Georgia Metzgeroth; Nadine Müller; Sven Schneider; Nicole Naumann; Christoph Walz; T Haferlach; Peter Valent; Wolf-Karsten Hofmann; Nicholas C.P. Cross; A. Fabarius; Andreas Reiter

To explore the molecular profile and its prognostic implication in systemic mastocytosis (SM), we analyzed the mutation status of granulocyte–macrophage colony-forming progenitor cells (CFU-GM) in patients with KIT D816V+ indolent SM (ISM, n=4), smoldering SM (SSM, n=2), aggressive SM (ASM, n=1), SM with associated clonal hematologic non-mast cell lineage disorder (SM-AHNMD, n=5) and ASM-AHNMD (n=7). All patients with (A)SM-AHNMD (n=12) carried 1–4 (median 3) additional mutations in 11 genes tested, most frequently TET2, SRSF2, ASXL1, CBL and EZH2. In multi-mutated (A)SM-AHNMD, KIT D816V+ single-cell-derived CFU-GM colonies were identified in 8/12 patients (median 60%, range 0–95). Additional mutations were identified in CFU-GM colonies in all patients, and logical hierarchy analysis indicated that mutations in TET2, SRSF2 and ASXL1 preceded KIT D816V. In ISM/SSM, no additional mutations were detected and CFU-GM colonies were exclusively KIT D816V−. These data indicate that (a) (A)SM-AHNMD is a multi-mutated neoplasm, (b) mutations in TET2, SRSF2 or ASXL1 precede KIT D816V in ASM-AHNMD, (c) KIT D816V is thus a phenotype modifier toward SM and (d) KIT D816V or other mutations are rare in CFU-GM colonies of ISM/SSM patients, which might explain at least in part their better prognosis.


BMC Cancer | 2011

Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy

Juliana Schwaab; Karoline Horisberger; Philipp Ströbel; Beatrice Bohn; Deniz Gencer; Georg Kähler; Peter Kienle; Stefan Post; Frederik Wenz; Wolf-Karsten Hofmann; Ralf-Dieter Hofheinz; Philipp Erben

BackgroundFor patients with locally advanced rectal cancer (LARC) neoadjuvant chemoradiotherapy is recommended as standard therapy. So far, no predictive or prognostic molecular factors for patients undergoing multimodal treatment are established. Increased angiogenesis and altered tumour metabolism as adaption to hypoxic conditions in cancers play an important role in tumour progression and metastasis. Enhanced expression of Vascular-endothelial-growth-factor-receptor (VEGF-R) and Transketolase-like-1 (TKTL1) are related to hypoxic conditions in tumours. In search for potential prognostic molecular markers we investigated the expression of VEGFR-1, VEGFR-2 and TKTL1 in patients with LARC treated with neoadjuvant chemoradiotherapy and cetuximab.MethodsTumour and corresponding normal tissue from pre-therapeutic biopsies of 33 patients (m: 23, f: 10; median age: 61 years) with LARC treated in phase-I and II trials with neoadjuvant chemoradiotherapy (cetuximab, irinotecan, capecitabine in combination with radiotherapy) were analysed by quantitative PCR.ResultsSignificantly higher expression of VEGFR-1/2 was found in tumour tissue in pre-treatment biopsies as well as in resected specimen after neoadjuvant chemoradiotherapy compared to corresponding normal tissue. High TKTL1 expression significantly correlated with disease free survival. None of the markers had influence on early response parameters such as tumour regression grading. There was no correlation of gene expression between the investigated markers.ConclusionHigh TKTL-1 expression correlates with poor prognosis in terms of 3 year disease-free survival in patients with LARC treated with intensified neoadjuvant chemoradiotherapy and may therefore serve as a molecular prognostic marker which should be further evaluated in randomised clinical trials.


Leukemia | 2013

Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase

Georgia Metzgeroth; Juliana Schwaab; Darko Gosenca; A. Fabarius; Claudia Haferlach; Andreas Hochhaus; Nicholas C.P. Cross; Wolf-Karsten Hofmann; Andreas Reiter

Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase


Blood | 2015

Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis

Katharina Blatt; Sabine Cerny-Reiterer; Juliana Schwaab; Karl Sotlar; Gregor Eisenwort; Gabriele Stefanzl; Gregor Hoermann; Matthias Mayerhofer; Mathias Schneeweiss; Sylvia Knapp; Thomas Rülicke; Emir Hadzijusufovic; Karin Bauer; Dubravka Smiljkovic; Michael Willmann; Andreas Reiter; Hans-Peter Horny; Peter Valent

The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30(+) MCPV-1.1 cells (10 µg/mL) compared with CD30(-) HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30(+) MC lines tested as well as in primary neoplastic MCs in patients with CD30(+) SM, but did not induce apoptosis in neoplastic MCs in patients with CD30(-) SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE-induced histamine release in CD30(+) MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30(+) advanced SM.


Haematologica | 2013

Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements

Andrew Chase; Catherine Bryant; Joannah Score; Claudia Haferlach; Vera Grossmann; Juliana Schwaab; Wolf-Karsten Hofmann; Andreas Reiter; Nicholas C.P. Cross

JAK2 fusion genes are rare but recurrent abnormalities associated with diverse, clinically heterogeneous hematologic malignancies. Here we assess the JAK1/2 inhibitor ruxolitinib as therapy for patients with JAK2-rearrangement associated myeloproliferative neoplasms (MPN). Ruxolitinib-treated Ba/F3 cells transformed to IL3 independence by ETV6-JAK2 showed reduced proliferation and survival (IC50 = 370 nM) compared with KG1A or Ba/F3 cells transformed by BCR-ABL1, SPBN1-FLT3 and ZMYM2-FGFR1 (IC50 > 10 μM for all). Inhibition was associated with reduced phosphorylation of ETV6-JAK2, ERK, STAT5 and AKT. Primary cell growth from 2 patients with JAK2 rearrangement and one patient with JAK2 amplification was assessed in methylcellulose assays. Reduced colony growth was seen for all patients in ruxolitinib-treated cultures compared with healthy controls (n=7). Fluorescence in situ hybridization showed reduced growth of JAK2-rearrangement positive colonies compared to JAK2-rearrangement negative colonies. Our data, therefore, provide evidence that ruxolitinib is a promising therapy for treatment of patients with JAK2 fusion genes.


Leukemia | 2016

Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

Barbara Peter; Georg E. Winter; Katharina Blatt; Keiryn L. Bennett; Gabriele Stefanzl; Uwe Rix; Gregor Eisenwort; Emir Hadzijusufovic; Manuela Gridling; Catherine Dutreix; Gregor Hoermann; Juliana Schwaab; Deepti Radia; Johannes Roesel; Paul W. Manley; Andreas Reiter; Giulio Superti-Furga; Peter Valent

Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs.

Collaboration


Dive into the Juliana Schwaab's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Valent

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge