Juliane Reinhardt
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliane Reinhardt.
Applied Physics Letters | 2013
Robert Hoppe; Juliane Reinhardt; Georg Hofmann; Jens Patommel; Jan-Dierk Grunwaldt; Christian Danvad Damsgaard; G. Wellenreuther; Gerald Falkenberg; Christian G. Schroer
We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L3 absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20–30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.
ACS Nano | 2016
Clément Y. J. Hémonnot; Juliane Reinhardt; Oliva Saldanha; Jens Patommel; Rita Graceffa; Britta Weinhausen; Manfred Burghammer; Christian G. Schroer; Sarah Köster
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.
Applied Physics Letters | 2015
Tomaš Stankevič; Dmitry Dzhigaev; Zhaoxia Bi; Max Rose; Anatoly Shabalin; Juliane Reinhardt; Anders Mikkelsen; Lars Samuelson; Gerald Falkenberg; I. A. Vartanyants; Robert Feidenhans'l
Strained InGaN/GaN core-shell nanowires (NWs) are promising candidates for solid state lighting applications due to their superior properties compared to planar films. NW based devices consist of multiple functional layers, which sum up to many hundred nanometers in thickness, that can uniquely be accessed in a non-destructive fashion by hard X-rays. Here, we present a detailed nanoscale strain mapping performed on a single, 400 nm thick and 2 μm long core-shell InGaN/GaN nanowire with an x-ray beam focused down to 100 nm. We observe an inhomogeneous strain distribution caused by the asymmetric strain relaxation in the shell. One side of the InGaN shell was fully strained, whereas the other side and the top part were relaxed. Additionally, tilt and strain gradients were determined at the interface with the substrate.
Applied Physics Letters | 2014
Frank Seiboth; Maria Scholz; Jens Patommel; Robert Hoppe; Felix Wittwer; Juliane Reinhardt; Jens Seidel; Martin Knaut; Andreas Jahn; Karola Richter; Johann W. Bartha; Gerald Falkenberg; Christian G. Schroer
In order to focus light or x rays, the thickness of a refractive lens is typically varied over its aperture. Here, we present a refractive x-ray lens made of lamellae of constant thickness, the refractive lamellar lens. Refractive power is created by a specific bending of the lamellae rather than by a concave lens profile. This very special design has the technological advantage that materials like sapphire or diamond can be used to make lenses by coating techniques. A first lens prototype focused x rays with a photon energy E = 15.25 keV to a lateral beam size of 164 nm × 296 nm full width at half maximum.
RSC Advances | 2016
Sina Baier; Arne Wittstock; Christian Danvad Damsgaard; Ana Diaz; Juliane Reinhardt; Federico Benzi; Junjie Shi; Torsten Scherer; Di Wang; Christian Kübel; Christian G. Schroer; Jan-Dierk Grunwaldt
A novel complementary approach of electron microscopy/environmental TEM and in situ hard X-ray ptychography was used to study the thermally induced coarsening of nanoporous gold under different atmospheres, pressures and after ceria deposition. The temperature applied during ptychographic imaging was determined by IR thermography. While using elevated temperatures (room temperature – 400 °C) and realistic gas atmospheres (1 bar) we achieved for the first time a spatial resolution of about 20 nm during hard X-ray ptychography. The annealing of pure and ceria stabilized nanoporous gold in different atmospheres revealed that the conditions have a tremendous influence on the coarsening. The porous structure of the samples was stable up to approximately 800 °C in vacuum, whereas pronounced changes and coarsening were observed already at approximately 300 °C in oxygen containing atmospheres. A layer of ceria on the nanoporous gold led to an improvement of the stability, but did not alleviate the influence of the gas atmosphere. Different behaviors were observed, such as coarsening and even material loss or migration. The results suggest that additional mechanisms beyond surface diffusion need to be considered and that microscopic studies aimed at more realistic conditions are important to understand the behavior of such materials and catalysts.
Proceedings of SPIE | 2013
Christian G. Schroer; Florian-Emanuel Brack; Roman Brendler; Susanne Hönig; Robert Hoppe; Jens Patommel; Stephan Ritter; Maria Scholz; Andreas Schropp; Frank Seiboth; Daniel Nilsson; Jussi Rahomäki; Fredrik Uhlén; Ulrich Vogt; Juliane Reinhardt; Gerald Falkenberg
Hard x-ray scanning microscopy relies on small and intensive nanobeams. Refractive x-ray lenses are well suited to generate hard x-ray beams with lateral dimensions of 100 nm and below. The diffraction limited beam size of refractive x-ray lenses mainly depends on the focal length and the attenuation inside the lens material. The numerical aperture of refractive lenses scales with the inverse square root of the focal length until it reaches the critical angle of total reflection. We have used nanofocusing refractive x-ray lenses made of silicon to focus hard x-rays at 8 and 20 keV to (sub-)100 nm dimensions. Using ptychographic scanning coherent diffraction imaging we have characterized these nanobeams with high accuracy and sensitivity, measuring the full complex wave field in the focus. This gives access to the full caustic and aberrations of the x-ray optics.
ACS Nano | 2017
Dmitry Dzhigaev; Tomaš Stankevič; Zhaoxia Bi; Sergey Lazarev; Max Rose; Anatoly Shabalin; Juliane Reinhardt; Anders Mikkelsen; Lars Samuelson; Gerald Falkenberg; Robert Feidenhans’l; I. A. Vartanyants
The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core-shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core-shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed.
Microscopy and Microanalysis | 2017
Sina Baier; Christian Danvad Damsgaard; Michael Klumpp; Juliane Reinhardt; Thomas L. Sheppard; Zoltan Imre Balogh; Takeshi Kasama; Federico Benzi; Jakob Birkedal Wagner; Wilhelm Schwieger; Christian G. Schroer; Jan-Dierk Grunwaldt
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
Proceedings of SPIE | 2015
Tomaš Stankevič; Dmitry Dzhigaev; Zhaoxia Bi; Max Rose; Anatoly Shabalin; Juliane Reinhardt; Anders Mikkelsen; Lars Samuelson; Gerald Falkenberg; I. A. Vartanyants; Robert Feidenhans'l
The core-shell nanowires have the promise to become the future building blocks of light emitting diodes, solar cells and quantum computers. The high surface to volume ratio allows efficient elastic strain relaxation, making it possible to combine a wider range of materials into the heterostructures as compared to the traditional, planar geometry. As a result, the strain fields appear in both the core and the shell of the nanowires, which can affect the device properties. The hard x-ray nanoprobe is a tool that enables a nondestructive mapping of the strain and tilt distributions where other techniques cannot be applied. By measuring the positions of the Bragg peaks for each point on the sample we can evaluate the values of local tilt and strain. In this paper we demonstrate the detailed strain mapping of the strained InGaN/GaN core-shell nanowire. We observe an asymmetric strain distribution in the GaN core caused by an uneven shell relaxation. Additionally, we analyzed the local micro-tilt distribution, which shows the edge effects at the top and bottom of the nanowire. The measurements were compared to the finite element modelling and show a good agreement.
Ultramicroscopy | 2017
Juliane Reinhardt; Robert Hoppe; Georg Hofmann; Christian Danvad Damsgaard; Jens Patommel; Christoph Baumbach; Sina Baier; Amélie Rochet; Jan-Dierk Grunwaldt; Gerald Falkenberg; Christian G. Schroer