Julianne Smith
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julianne Smith.
Nucleic Acids Research | 2006
Julianne Smith; Sylvestre Grizot; Sylvain Arnould; Aymeric Duclert; Jean-Charles Epinat; Patrick Chames; Jesús Prieto; Pilar Redondo; Francisco J. Blanco; Jerónimo Bravo; Guillermo Montoya; Philippe Duchateau
Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.
Current Gene Therapy | 2011
George H. Silva; Laurent Poirot; Roman Galetto; Julianne Smith; Guillermo Montoya; Philippe Duchateau; Frédéric Paques
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus–based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Nucleic Acids Research | 2009
Sylvestre Grizot; Julianne Smith; Fayza Daboussi; Jesús Prieto; Pilar Redondo; Nekane Merino; Maider Villate; Séverine Thomas; Laetitia Lemaire; Guillermo Montoya; F.J. Blanco; Frédéric Pâques; Philippe Duchateau
Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.
Stem Cells | 2013
Julianne Smith; Laura M. Calvi
Hematopoietic stem cell (HSC) behavior is governed in large part by interactions of the blood system with the bone microenvironment. Increasing evidence demonstrates the profound role the local HSC microenvironment or niche plays in normal stem cell function, in therapeutic activation and in the setting of malignancy. A number of cellular and molecular components of the microenvironment have been identified thus far, several of which are likely to provide exciting therapeutic targets in the near future. Clinically effective strategies for niche manipulation, however, require careful study of the interaction of these niche components. Some of the key findings defining these regulatory interactions are explored in this concise review, with special emphasis on potential translational applications. STEM Cells 2013;31:1044–1050
Journal of Gene Medicine | 2006
Agnès Gouble; Julianne Smith; Sylvia Bruneau; Christophe Perez; Valérie Guyot; Jean-Pierre Cabaniols; Sophie Leduc; Laurence Fiette; Patrick Ave; Béatrice Micheau; Philippe Duchateau
Sequence‐specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000‐fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double‐strand break (DSB)‐induced HR.
Molecular Therapy | 2011
Stephanie Grosse; Nicolas Huot; Sylvain Arnould; Sébastien Barradeau; Diane Le Clerre; Isabelle Chion-Sotinel; Cécile Jacqmarcq; Benoit Chapellier; Ayla Ergani; Carole Desseaux; Frédéric Cédrone; Emmanuel Conseiller; Frédéric Pâques; Marc Labetoulle; Julianne Smith
Herpes simplex virus type 1 (HSV1) is a major health problem. As for most viral diseases, current antiviral treatments are based on the inhibition of viral replication once it has already started. As a consequence, they impair neither the viral cycle at its early stages nor the latent form of the virus, and thus cannot be considered as real preventive treatments. Latent HSV1 virus could be addressed by rare cutting endonucleases, such as meganucleases. With the aim of a proof of concept study, we generated several meganucleases recognizing HSV1 sequences, and assessed their antiviral activity in cultured cells. We demonstrate that expression of these proteins in African green monkey kidney fibroblast (COS-7) and BSR cells inhibits infection by HSV1, at low and moderate multiplicities of infection (MOIs), inducing a significant reduction of the viral load. Furthermore, the remaining viral genomes display a high rate of mutation (up to 16%) at the meganuclease cleavage site, consistent with a mechanism of action based on the cleavage of the viral genome. This specific mechanism of action qualifies meganucleases as an alternative class of antiviral agent, with the potential to address replicative as well as latent DNA viral forms.
Blood | 2012
Laura M. Calvi; Olga Bromberg; Yumie Rhee; Jonathan M. Weber; Julianne Smith; Miles J. Basil; Benjamin J. Frisch; Teresita Bellido
Microenvironmental expansion of hematopoietic stem cells (HSCs) is induced by treatment with parathyroid hormone (PTH) or activation of the PTH receptor (PTH1R) in osteoblastic cells; however, the osteoblastic subset mediating this action of PTH is unknown. Osteocytes are terminally differentiated osteoblasts embedded in mineralized bone matrix but are connected with the BM. Activation of PTH1R in osteocytes increases osteoblastic number and bone mass. To establish whether osteocyte-mediated PTH1R signaling expands HSCs, we studied mice expressing a constitutively active PTH1R in osteocytes (TG mice). Osteoblasts, osteoclasts, and trabecular bone were increased in TG mice without changes in BM phenotypic HSCs or HSC function. TG mice had progressively increased trabecular bone but decreased HSC function. In severely affected TG mice, phenotypic HSCs were decreased in the BM but increased in the spleen. TG osteocytes had no increase in signals associated with microenvironmental HSC support, and the spindle-shaped osteoblastic cells that increased with PTH treatment were not present in TG bones. These findings demonstrate that activation of PTH1R signaling in osteocytes does not expand BM HSCs, which are instead decreased in TG mice. Therefore, osteocytes do not mediate the HSC expansion induced by PTH1R signaling. Further, osteoblastic expansion is not sufficient to increase HSCs.
Blood | 2015
Laurie Menger; Agnès Gouble; Maria A. V. Marzolini; Annette Pachnio; Katharina Bergerhoff; Jake Y. Henry; Julianne Smith; Martin Pule; Paul Moss; Stanley R. Riddell; Sergio A. Quezada; Karl S. Peggs
Cytomegalovirus (CMV) infection is responsible for substantial morbidity and mortality after allogeneic hematopoietic stem cell transplant. T-cell immunity is critical for control of CMV infection, and correction of the immune deficiency induced by transplant is now clinically achievable by the adoptive transfer of donor-derived CMV-specific T cells. It is notable, however, that most clinical studies of adoptive T- cell therapy exclude patients with graft-versus-host disease (GVHD) from receiving systemic corticosteroid therapy, which impairs cellular immunity. This group of patients remains the highest clinical risk group for recurrent and problematic infections. Here, we address this unmet clinical need by genetic disruption of the glucocorticoid receptor (GR) gene using electroporation of transcription activator-like effector nuclease (TALEN) messenger RNA. We demonstrate efficient inactivation of the GR gene without off-target activity in Streptamer-selected CMV-specific CD8(+) T cells (HLA-A02/NLV peptide), conferring resistance to glucocorticoids. TALEN-modified CMV-specific T cells retained specific killing of target cells pulsed with the CMV peptide NLV in the presence of dexamethasone (DEX). Inactivation of the GR gene also conferred resistance to DEX in a xenogeneic GVHD model in sublethally irradiated NOD-scid IL2rγ(null) mice. This proof of concept provides the rationale for the development of clinical protocols for producing and administering high-purity genetically engineered virus-specific T cells that are resistant to the suppressive effects of corticosteroids.
Current Gene Therapy | 2013
Andrew M. Scharenberg; Philippe Duchateau; Julianne Smith
Over three years following the discovery of the TAL code, artificial TAL effector DNA binding domains have emerged as the premier platform for building site-specific DNA binding polypeptides for use in biological research. Here, we provide an overview of TAL effector and alternative modular DNA binding domain (mDBD) technologies, focusing on their use in established and emerging architectures for building site-specific endonucleases for genome engineering applications. We also discuss considerations for choosing TAL effector/mDBD or alternative nuclease technologies for genome engineering projects ranging from basic laboratory gene editing of cultured cell lines to therapeutics. Finally, we highlight how the rapid pace of development of mDBD-based, such as monomeric TALENs (I-TevI-TAL), and more recently RNA-guided nucleases (CRISPR-Cas9) has led to a transition in the field of genome engineering towards development of the next generation of technologies aimed at controlling events that occur after targeted DNA breaks are made.
Cancer Research | 2016
Laurie Menger; Anna Sledzinska; Katharina Bergerhoff; Frederick Arce Vargas; Julianne Smith; Laurent Poirot; Martin Pule; Javier Hererro; Karl S. Peggs; Sergio A. Quezada
Despite the promising efficacy of adoptive cell therapies (ACT) in melanoma, complete response rates remain relatively low and outcomes in other cancers are less impressive. The immunosuppressive nature of the tumor microenvironment and the expression of immune-inhibitory ligands, such as PD-L1/CD274 by the tumor and stroma are considered key factors limiting efficacy. The addition of checkpoint inhibitors (CPI) to ACT protocols bypasses some mechanisms of immunosuppression, but associated toxicities remain a significant concern. To overcome PD-L1-mediated immunosuppression and reduce CPI-associated toxicities, we used TALEN technology to render tumor-reactive T cells resistant to PD-1 signaling. Here, we demonstrate that inactivation of the PD-1 gene in melanoma-reactive CD8(+) T cells and in fibrosarcoma-reactive polyclonal T cells enhanced the persistence of PD-1 gene-modified T cells at the tumor site and increased tumor control. These results illustrate the feasibility and potency of approaches incorporating advanced gene-editing technologies into ACT protocols to silence immune checkpoints as a strategy to overcome locally active immune escape pathways. Cancer Res; 76(8); 2087-93. ©2016 AACR.