Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie A. DeMartino is active.

Publication


Featured researches published by Julie A. DeMartino.


Science | 1996

A Receptor in Pituitary and Hypothalamus That Functions in Growth Hormone Release

Andrew D. Howard; Scott D. Feighner; Doris F. Cully; Joseph P. Arena; Paul A. Liberator; Charles Rosenblum; Michel Hamelin; Donna L. Hreniuk; Oksana C. Palyha; Jennifer Anderson; Philip S. Paress; Carmen Diaz; Michael Chou; Ken K. Liu; Karen Kulju McKee; Sheng-Shung Pong; Lee-Yuh Chaung; Alex Elbrecht; Mike Dashkevicz; Robert Heavens; M. Rigby; D.J.S. Sirinathsinghji; Dennis C. Dean; David G. Melillo; Arthur A. Patchett; Ravi P. Nargund; Patrick R. Griffin; Julie A. DeMartino; Sunil K. Gupta; James M. Schaeffer

Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2

Catherine Abbadie; Jill A. Lindia; Anne Marie Cumiskey; Larry Peterson; John S. Mudgett; Ellen K. Bayne; Julie A. DeMartino; D. Euan MacIntyre; Michael J. Forrest

Mice lacking the chemokine receptor chemotactic cytokine receptor 2 (CCR2) have a marked attenuation of monocyte recruitment in response to various inflammatory stimuli and a reduction of inflammatory lesions in models of demyelinating disease. In the present study, we compared nociceptive responses in inflammatory and neuropathic models of pain in CCR2 knockout and wild-type mice. In acute pain tests, responses were equivalent in CCR2 knockout and wild-type mice. In models of inflammatory pain, CCR2 knockout mice showed a 70% reduction in phase 2 of the intraplantar formalin-evoked pain response but only a modest (20–30%) and nonsignificant reduction of mechanical allodynia after intraplantar Freunds adjuvant (CFA). In a model of neuropathic pain, the development of mechanical allodynia was totally abrogated in CCR2 knockout mice. CFA administration induced marked up-regulation of CCR2 mRNA in the skin and a moderate increase in the sciatic nerve and dorsal root ganglia (DRG). In response to nerve ligation, persistent and marked up-regulation of CCR2 mRNA was evident in the nerve and DRG. Disruption of Schwann cells in response to nerve lesion resulted in infiltration of CCR2-positive monocytes/macrophages not only to the neuroma but also to the DRG. Chronic pain also resulted in the appearance of activated CCR2-positive microglia in the spinal cord. Collectively, these data suggest that the recruitment and activation of macrophages and microglia peripherally and in neural tissue may contribute to both inflammatory and neuropathic pain states. Accordingly, blockade of the CCR2 receptor may provide a novel therapeutic modality for the treatment of chronic pain.


Bioorganic & Medicinal Chemistry Letters | 2002

Photochemical preparation of a pyridone containing tetracycle: A jak protein kinase inhibitor

James E. Thompson; Rose M. Cubbon; Richard T. Cummings; Linda S. Wicker; Robert A. Frankshun; Barry R. Cunningham; Patricia M. Cameron; Peter T. Meinke; Nigel Liverton; Youmin Weng; Julie A. DeMartino

Jak3 is a protein tyrosine kinase that is associated with the shared gamma chain of receptors for cytokines IL2, IL4, IL7, IL9, and IL13. We have discovered that a pyridone-containing tetracycle (6) may be prepared from trisubstituted imidazole (5) in high yield by irradiation with >350 nm light. Compound 6 inhibits Jak3 with K(I)=5 nM; it also inhibits Jak family members Tyk2 and Jak2 with IC(50)=1 nM and murine Jak1with IC(50)=15 nM. Compound 6 was tested as an inhibitor of 21 other protein kinases; it inhibited these kinases with IC(50)s ranging from 130 nM to >10 microM. Compound 6 also blocks IL2 and IL4 dependent proliferation of CTLL cells and inhibits the phosphorylation of STAT5 (an in vivo substrate of the Jak family) as measured by Western blotting.


Molecular Immunology | 1991

A single amino acid substitution in a common African allele of the CD4 molecule ablates binding of the monoclonal antibody, OKT4

Seth Lederman; Julie A. DeMartino; Bruce L. Daugherty; Ivan Foeldvari; Michael J. Yellin; Aileen M. Cleary; Noah Berkowitz; Israel Lowy; Ned S. Braunstein; George E. Mark; Leonard Chess

The CD4 molecule is a relatively non-polymorphic 55 kDa glycoprotein expressed on a subset of T lymphocytes. A common African allele of CD4 has been identified by non-reactivity with the monoclonal antibody, OKT4. The genetic basis for the OKT4- polymorphism of CD4 is unknown. In the present paper, the structure of the CD4 molecule from an homozygous CD4OKT4- individual was characterized at the molecular level. The size of the CD4OKT4- protein and mRNA were indistinguishable from those of the OKT4+ allele. The polymerase chain reaction (PCR) was used to map the structure of CD4OKT4- cDNAs by amplifying overlapping DNA segments and to obtain partial nucleotide sequence after asymmetric amplification. PCR was then used to clone CD4OKT4- cDNAs spanning the coding region of the entire, mature CD4 protein by amplification of two overlapping segments followed by PCR recombination. The nucleotide sequence of CD4OKT4- cDNA clones revealed a G----A transition at bp 867 encoding an arginine----tryptophan substitution at amino acid 240 relative to CD4OKT4+. Expression of a CD4OKT4- cDNA containing only this transition, confirmed that the arginine----tryptophan substitution at amino acid 240 ablates the binding of the mAb OKT4. A positively charged amino acid residue at this position is found in chimpanzee, rhesus macaque, mouse and rat CD4 suggesting that this mutation may confer unique functional properties to the CD4OKT4- protein.


Journal of Biological Chemistry | 1998

Binding and Functional Properties of Recombinant and Endogenous CXCR3 Chemokine Receptors

Youmin Weng; Salvatore J. Siciliano; Kristine Waldburger; Anna Sirotina-Meisher; Mary Jo Staruch; Bruce L. Daugherty; Sandra L. Gould; Martin S. Springer; Julie A. DeMartino

IP10 and MIG are two members of the CXC branch of the chemokine superfamily whose expression is dramatically up-regulated by interferon (IFN)-γ. The proteins act largely on natural killer (NK)-cells and activated T-cells and have been implicated in mediating some of the effects of IFN-γ and lipopolysaccharides (LPSs), as well as T-cell-dependent anti-tumor responses. Recently both chemokines have been shown to be functional agonists of the same G-protein-coupled receptor, CXCR3. We now report the pharmacological characterization of CXCR3 and find that, when heterologously expressed, CXCR3 binds IP10 and MIG with Ki values of 0.14 and 4.9 nm, respectively. The receptor has very modest affinity for SDF-1α and little or no affinity for other CXC-chemokines. The properties of the endogenous receptor expressed on activated T-cells are similar. Surprisingly, several CC-chemokines, particularly eotaxin and MCP-4, also compete with moderate affinity for the binding of IP10 to CXCR3. Eotaxin does not activate CXCR3 but, in CXCR3-transfected cells, can block IP10-mediated receptor activation. Eotaxin, therefore, may be a natural CXCR3 antagonist.


Journal of Experimental Medicine | 2003

Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection

Ronald S. Veazey; Per Johan Klasse; Thomas J. Ketas; Jacqueline D. Reeves; Michael Piatak; Kevin J. Kunstman; Shawn E. Kuhmann; Preston A. Marx; Jeffrey D. Lifson; Jason Dufour; Megan Mefford; Ivona Pandrea; Steven M. Wolinsky; Robert W. Doms; Julie A. DeMartino; Salvatore J. Siciliano; Kathy Lyons; Martin S. Springer; John P. Moore

Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4–200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian–human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (>21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.


Journal of Virology | 2001

CCR5, CXCR4, and CD4 Are Clustered and Closely Apposed on Microvilli of Human Macrophages and T Cells

Irwin I. Singer; Solomon Scott; Douglas W. Kawka; Jayne Chin; Bruce L. Daugherty; Julie A. DeMartino; Jerry DiSalvo; Sandra L. Gould; Janet E. Lineberger; Lorraine Malkowitz; Michael D. Miller; Lyndon Mitnaul; Salvatore J. Siciliano; Mary Jo Staruch; Hollis R. Williams; Hans J. Zweerink; Martin S. Springer

ABSTRACT The chemokine receptors CCR5 and CXCR4 act synergistically with CD4 in an ordered multistep mechanism to allow the binding and entry of human immunodeficiency virus type 1 (HIV-1). The efficiency of such a coordinated mechanism depends on the spatial distribution of the participating molecules on the cell surface. Immunoelectron microscopy was performed to address the subcellular localization of the chemokine receptors and CD4 at high resolution. Cells were fixed, cryoprocessed, and frozen; 80-nm cryosections were double labeled with combinations of CCR5, CXCR4, and CD4 antibodies and then stained with immunogold. Surprisingly, CCR5, CXCR4, and CD4 were found predominantly on microvilli and appeared to form homogeneous microclusters in all cell types examined, including macrophages and T cells. Further, while mixed microclusters were not observed, homogeneous microclusters of CD4 and the chemokine receptors were frequently separated by distances less than the diameter of an HIV-1 virion. Such distributions are likely to facilitate cooperative interactions with HIV-1 during virus adsorption to and penetration of human leukocytes and have significant implications for development of therapeutically useful inhibitors of the entry process. Although the mechanism underlying clustering is not understood, clusters were observed in small trans-Golgi vesicles, implying that they were organized shortly after synthesis and well before insertion into the cellular membrane. Chemokine receptors normally act as sensors, detecting concentration gradients of their ligands and thus providing directional information for cellular migration during both normal homeostasis and inflammatory responses. Localization of these sensors on the microvilli should enable more precise monitoring of their environment, improving efficiency of the chemotactic process. Moreover, since selectins, some integrins, and actin are also located on or in the microvillus, this organelle has many of the major elements required for chemotaxis.


Journal of Immunology | 2006

Severe Disease, Unaltered Leukocyte Migration, and Reduced IFN-γ Production in CXCR3−/− Mice with Experimental Autoimmune Encephalomyelitis

LiPing Liu; DeRen Huang; Masaru Matsui; Toby T. He; Taofang Hu; Julie A. DeMartino; Bao Lu; Craig Gerard; Richard M. Ransohoff

Experimental autoimmune encephalomyelitis (EAE) is a CD4+ Th1 T cell-mediated disease of the CNS, used to study certain aspects of multiple sclerosis. CXCR3, the receptor for CXCL10, CXCL9, and CXCL11, is preferentially expressed on activated Th1 T cells and has been proposed to govern the migration of lymphocytes into the inflamed CNS during multiple sclerosis and EAE. Unexpectedly, CXCL10-deficient mice were susceptible to EAE, leaving uncertain what the role of CXCR3 and its ligands might play in this disease model. In this study, we report that CXCR3−/− mice exhibit exaggerated severity of EAE compared with wild-type (CXCR3+/+) littermate mice. Surprisingly, there were neither quantitative nor qualitative differences in CNS-infiltrating leukocytes between CXCR3+/+ and CXCR3−/− mice with EAE. Despite these equivalent inflammatory infiltrates, CNS tissues from CXCR3−/− mice with EAE showed worsened blood-brain barrier disruption and more von Willebrand factor-immunoreactive vessels within inflamed spinal cords, as compared with CXCR3+/+ mice. Spinal cords of CXCR3−/− mice with EAE demonstrated decreased levels of IFN-γ, associated with reduced inducible NO synthase immunoreactivity, and lymph node T cells from CXCR3−/− mice primed with MOG35–55 secreted less IFN-γ in Ag-driven recall responses than cells from CXCR3+/+ animals. CXCR3−/− lymph node T cells also showed enhanced Ag-driven proliferation, which was reduced by addition of IFN-γ. Taken with prior findings, our data show that CXCL10 is the most relevant ligand for CXCR3 in EAE. CXCR3 does not govern leukocyte trafficking in EAE but modulates T cell IFN-γ production and downstream events that affect disease severity.


Journal of Leukocyte Biology | 2003

Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation

Jenny H. Xie; Naomi Nomura; Min Lu; Shiow-Ling Chen; Greg Koch; Youmin Weng; Ray Rosa; Jerry Di Salvo; John S. Mudgett; Laurence B. Peterson; Linda S. Wicker; Julie A. DeMartino

Naïve T cells, when activated by specific antigen and cytokines, up‐regulate adhesion molecules as well as chemokine receptors on their surface, which allows them to migrate to inflamed tissues. Human studies have shown that CXCR3 is one of the chemokine receptors that is induced during T cell activation. Moreover, CXCR3‐positive T cells are enriched at inflammatory sites in patients with autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. In this study, we use a mouse model of inflammation to demonstrate that CXCR3 is required for activated T cell transmigration to inflamed tissue. Using an anti‐ mCXCR3 antibody, we have shown that in vitro‐differentiated T helper (Th) 1 and Th2 cells up‐regulated CXCR3 upon stimulation with specific antigen/major histocompatibility complex. However, only Th1 cells, when adoptively transferred to syngeneic recipients, are efficiently recruited to the peritoneum in an adjuvant‐induced peritonitis model. Furthermore, the neutralizing anti‐mCXCR3 antibody profoundly inhibits the recruitment of Th1 cells to the inflamed peritoneum. Real‐time, quantitative reverse transcriptase‐polymerase chain reaction analysis demonstrates that the CXCR3 ligands, interferon (IFN)‐inducible protein 10 (CXCL10) and IFN‐inducible T cell α chemoattractant (CXCL11), are among the many chemokines induced in the adjuvant‐treated peritoneum. The anti‐mCXCR3 antibody is also effective in inhibiting a delayed‐type hypersensitivity response, which is largely mediated by enhanced trafficking of activated T cells to peripheral inflammatory sites. Collectively, our results suggest that CXCR3 has a critical role in T cell transmigration to sites of inflammation and thus, may serve as a molecular target for anti‐inflammatory therapies.


Journal of Immunology | 2002

The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo

Matthew K. Park; Doron Amichay; Paul E. Love; Elizabeth Wick; Fang Liao; Alex Grinberg; Ronald L. Rabin; Hongwei H. Zhang; Senkuta Gebeyehu; Timothy M. Wright; Akiko Iwasaki; Youmin Weng; Julie A. DeMartino; Karen L. Elkins; Joshua M. Farber

Monokine induced by IFN-γ (Mig; CXC chemokine ligand 9) is an IFN-γ-inducible CXC chemokine that signals through the receptor CXCR3 and is known to function as a chemotactic factor for human T cells, particularly following T cell activation. The mig gene can be induced in multiple cell types and organs, and Mig has been shown to contribute to T cell infiltration into immune/inflammatory reactions in peripheral tissues in mice. We have investigated the expression and activities of Mig and CXCR3 in mouse cells and the role of Mig in models of host defense in mice. Murine (Mu)Mig functioned as a chemotactic factor for resting memory and activated T cells, both CD4+ and CD8+, and responsiveness to MuMig correlated with surface expression of MuCXCR3. Using mig−/− mice, we found that MuMig was not necessary for survival after infections with a number of intracellular pathogens. Surprisingly, however, we found that mig−/− mice showed reductions of 50–75% in Abs produced against the intracellular bacterium Francisella tularensis live vaccine strain. Furthermore, we found that MuMig induced both calcium signals and chemotaxis in activated B cells, and that B cell activation induced expression of MuCXCR3. In addition, IFN-γ induced the expression of mumig in APCs, including CD8α+ and CD8α− dendritic cells. Together, our data suggest that Mig and CXCR3 may be important not only to recruit T cells to peripheral inflammatory sites, but also in some cases to maximize interactions among activated T cells, B cells, and dendritic cells within lymphoid organs to provide optimal humoral responses to pathogens.

Collaboration


Dive into the Julie A. DeMartino's collaboration.

Top Co-Authors

Avatar

Emilio A. Emini

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Gwen Carver

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Janet Lineberger

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge