Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie A. Hong is active.

Publication


Featured researches published by Julie A. Hong.


Oncogene | 2010

Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate

F Liu; J K Killian; M Yang; Robert L. Walker; Julie A. Hong; M Zhang; Sean Davis; Y Zhang; M Hussain; S Xi; Mahadev Rao; P A Meltzer; David S. Schrump

Limited information is available regarding epigenomic events mediating initiation and progression of tobacco-induced lung cancers. In this study, we established an in vitro system to examine epigenomic effects of cigarette smoke in respiratory epithelia. Normal human small airway epithelial cells and cdk-4/hTERT-immortalized human bronchial epithelial cells (HBEC) were cultured in normal media with or without cigarette smoke condensate (CSC) for up to 9 months under potentially relevant exposure conditions. Western blot analysis showed that CSC mediated dose- and time-dependent diminution of H4K16Ac and H4K20Me3, while increasing relative levels of H3K27Me3; these histone alterations coincided with decreased DNA methyltransferase 1 (DNMT1) and increased DNMT3b expression. Pyrosequencing and quantitative RT–PCR experiments revealed time-dependent hypomethylation of D4Z4, NBL2, and LINE-1 repetitive DNA sequences; up-regulation of H19, IGF2, MAGE-A1, and MAGE-A3; activation of Wnt signaling; and hypermethylation of tumor suppressor genes such as RASSF1A and RAR-β, which are frequently silenced in human lung cancers. Array-based DNA methylation profiling identified additional novel DNA methylation targets in soft-agar clones derived from CSC-exposed HBEC; a CSC gene expression signature was also identified in these cells. Progressive genomic hypomethylation and locoregional DNA hypermethylation induced by CSC coincided with a dramatic increase in soft-agar clonogenicity. Collectively, these data indicate that cigarette smoke induces ‘cancer-associated’ epigenomic alterations in cultured respiratory epithelia. This in vitro model may prove useful for delineating early epigenetic mechanisms regulating gene expression during pulmonary carcinogenesis.


Clinical Cancer Research | 2006

Phase I Study of Decitabine-Mediated Gene Expression in Patients with Cancers Involving the Lungs, Esophagus, or Pleura

David S. Schrump; Dao M. Nguyen; Ming Zhao; Xinmin Li; Tricia F. Kunst; Ana Hancox; Julie A. Hong; G. Aaron Chen; Vitaliy Pishchik; William D. Figg; Anthony J. Murgo; Seth M. Steinberg

Purpose: The DNA methylation paradox, manifested as derepression of cancer-testis antigens, and silencing of tumor suppressors during malignant transformation, provides the rationale for the utilization of chromatin remodeling agents for cancer therapy. A phase I trial was done to examine pharmacokinetics, toxicities, and gene expression mediated by 5-aza-2′-deoxycytidine (DAC) in patients with thoracic malignancies. Experimental Design: Thirty-five patients with cancers refractory to standard therapy received continuous 72-hour DAC infusions using a phase I dose-escalation schema. Each full course of therapy consisted of two identical 35-day cycles. Plasma DAC levels were evaluated by liquid chromatography-mass spectrometry techniques. Quantitative reverse transcription-PCR, methylation-specific PCR, and immunohistochemical techniques were used to evaluate NY-ESO-1, MAGE-3, and p16 expression in tumor biopsies. Long oligonucleotide arrays were used to evaluate gene expression profiles in laser-captured tumor cells before and after DAC exposure. Results: Thirty-five patients were evaluable for toxicities; 25 were evaluable for treatment response. Myelosuppression constituted dose-limiting toxicity. The maximum tolerated dose of DAC was 60 to 75 mg/m2 depending on the number of prior cytotoxic chemotherapy regimens. No objective responses were observed. Plasma DAC concentrations approximated thresholds for gene induction in cultured cancer cells. Target gene induction was observed in 36% of patients. Posttreatment antibodies to NY-ESO-1 were detected in three patients exhibiting NY-ESO-1 induction in their tumor tissues. Complex, heterogeneous gene expression profiles were observed in pretreatment and posttreatment tissues. Conclusion: Prolonged DAC infusions can modulate gene expression in primary thoracic malignancies. These findings support further evaluation of DNA-demethylating agents alone or in combination with other regimens targeting induced gene products for the treatment of these neoplasms.


Journal of Immunotherapy | 2001

Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1.

Weiser Ts; Guo Zs; Galen A. Ohnmacht; Parkhurst Ml; Tong-On P; Franco Marincola; Yu X; Chen Ga; Julie A. Hong; John H. Stewart; Dao M. Nguyen; Steven A. Rosenberg; David S. Schrump

Global alterations in chromatin structure profoundly influence gene expression in thoracic neoplasms, silencing tumor suppressors while facilitating the expression of various cancer testis antigens such as NY-ESO-1. Although recent studies have shown that histone deacetylase inhibitors can potentiate tumor suppressor gene induction mediated by demethylating agents in cancer cells, the ability of these agents to augment cancer testis antigen expression have not been fully defined. The authors designed the current study to determine whether the histone deacetylase inhibitor, depsipeptide FR901228 (DP), could enhance NY-ESO-1 induction mediated by the DNA demethylating agent 5-Aza-2′-deoxycytidine (DAC) in cell lines established primarily from thoracic cancers. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed that, under exposure conditions potentially achievable in clinical settings, DAC dramatically induced NY-ESO-1 expression in cultured cancer lines. DP alone mediated negligible target gene induction but significantly augmented DAC-mediated induction of NY-ESO-1. After DAC or sequential DAC–DP treatment, HLA-A*0201 cancer cells were recognized by an HLA-A*0201 CTL specific for NY-ESO-1. Although sequential DAC/DP exposure did not uniformly enhance immune recognition of target cells compared with DAC alone, this treatment mediated profound induction of apoptosis in cancer cells but not normal human bronchial epithelia. The apoptotic effects of DAC, DP, or sequential DAC–DP did not correlate in an obvious manner with histology, or the magnitude of NY-ESO-1 induction in cancer cells. Although the mechanisms have not been fully defined, sequential DAC–DP treatment may be a novel strategy to augment antitumor immunity in cancer patients.


Clinical Cancer Research | 2008

Clinical and molecular responses in lung cancer patients receiving Romidepsin

David S. Schrump; Dao M. Nguyen; Ming Zhao; Xinmin Li; Tricia F. Kunst; Ana Hancox; Julie A. Hong; G. Aaron Chen; Evgeny Kruchin; John J. Wright; Douglas R. Rosing; Alex Sparreboom; William D. Figg; Seth M. Steinberg

Purpose: Our preclinical experiments indicated that Romidepsin (Depsipeptide FK228; DP) mediates growth arrest and apoptosis in cultured lung cancer cells. A phase II trial was done to examine clinical and molecular responses mediated by this histone deacetylase inhibitor in lung cancer patients. Experimental Design: Nineteen patients with neoplasms refractory to standard therapy received 4-h DP infusions (17.8 mg/m2) on days 1 and 7 of a 21-day cycle. Each full course of therapy consisted of two identical 21-day cycles. Plasma DP levels were evaluated by liquid chromatography–mass spectrometry techniques. A variety of molecular end points were assessed in tumor biopsies via immunohistochemistry techniques. Long oligo arrays were used to examine gene expression profiles in laser-captured tumor cells before and after DP exposure, relative to lung cancer cells and adjacent normal bronchial epithelia from patients undergoing pulmonary resections. Results: Nineteen patients were evaluable for toxicity assessment; 18 were evaluable for treatment response. Myelosuppression was dose limiting in one individual. No significant cardiac toxicities were observed. Maximum steady-state plasma DP concentrations ranged from 384 to 1,114 ng/mL. No objective responses were observed. Transient stabilization of disease was noted in nine patients. DP enhanced acetylation of histone H4, increased p21 expression in lung cancer cells, and seemed to shift global gene expression profiles in these cells toward those detected in normal bronchial epithelia. Conclusion: Although exhibiting minimal clinical efficacy at this dose and schedule, DP mediates biological effects that may warrant further evaluation of this histone deacetylase inhibitor in combination with novel-targeted agents in lung cancer patients.


Cancer Research | 2009

Tobacco Smoke Induces Polycomb-Mediated Repression of Dickkopf-1 in Lung Cancer Cells

Mustafa Hussain; Mahadev Rao; Ashley E. Humphries; Julie A. Hong; Fang Liu; Maocheng Yang; Diana Caragacianu; David S. Schrump

Limited information is available about epigenetic mechanisms by which cigarette smoke enhances the initiation and progression of lung cancer. To examine this issue, A549 and Calu-6 lung cancer cells were cultured in normal media with or without tobacco smoke condensate (TSC) under clinically relevant exposure conditions. Ten-day TSC exposure dramatically increased the tumorigenicity of lung cancer cells in nude mice. Microarray and quantitative reverse transcription-PCR (RT-PCR) experiments revealed that this phenomenon coincided with diminished expression of Dickkopf-1 (Dkk-1). Western blot, chromatin immunoprecipitation, methylation-specific PCR, and pyrosequencing experiments showed that repression of Dkk-1 coincided with decreased H4K16Ac, increased H3K27me3, and recruitment of SirT1, EZH2, SUZ12, and Bmi1 without DNA hypermethylation within the Dkk-1 promoter despite prolonged TSC exposures. Removal of TSC from culture media resulted in loss of promoter-associated polycomb repressor complexes and reexpression of Dkk-1. siRNA-mediated knockdown of EZH2 and SirT1 partially abrogated TSC-mediated inhibition of Dkk-1 expression. Western blot and quantitative RT-PCR array experiments showed that TSC exposure as well as knockdown of Dkk-1 activated Wnt signaling and significantly up-regulated Wnt5a in lung cancer cells. Knockdown of Dkk-1 recapitulated the dramatic protumorigenic effects of TSC exposure in Calu-6 cells. Despite the transient nature of Dkk-1 repression following TSC exposure in vitro, Dkk-1 remained silenced in tumor xenografts derived from TSC-treated Calu-6 cells. Collectively, these data provide evidence that cigarette smoke directly engages polycomb machinery to activate a signaling network implicated in maintenance of cancer stem cells.


PLOS ONE | 2010

Cigarette Smoke Induces C/EBP-β-Mediated Activation of miR-31 in Normal Human Respiratory Epithelia and Lung Cancer Cells

Sichuan Xi; Maocheng Yang; Yongguang Tao; Hong Xu; Jigui Shan; Suzanne Inchauste; Mary Zhang; Leandro Mercedes; Julie A. Hong; Mahadev Rao; David S. Schrump

Background Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. Methodology Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3′ UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. Results CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. Conclusions Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.


Journal of Clinical Investigation | 2013

Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis.

Sichuan Xi; Hong Xu; Jigui Shan; Yongguang Tao; Julie A. Hong; Suzanne Inchauste; Mary Zhang; Tricia F. Kunst; Leandro Mercedes; David S. Schrump

MicroRNAs are critical mediators of stem cell pluripotency, differentiation, and malignancy. Limited information exists regarding microRNA alterations that facilitate initiation and progression of human lung cancers. In this study, array techniques were used to evaluate microRNA expression in normal human respiratory epithelia and lung cancer cells cultured in the presence or absence of cigarette smoke condensate (CSC). Under relevant exposure conditions, CSC significantly repressed miR-487b. Subsequent experiments demonstrated that miR-487b directly targeted SUZ12, BMI1, WNT5A, MYC, and KRAS. Repression of miR-487b correlated with overexpression of these targets in primary lung cancers and coincided with DNA methylation, de novo nucleosome occupancy, and decreased H2AZ and TCF1 levels within the miR-487b genomic locus. Deoxy-azacytidine derepressed miR-487b and attenuated CSC-mediated silencing of miR-487b. Constitutive expression of miR-487b abrogated Wnt signaling, inhibited in vitro proliferation and invasion of lung cancer cells mediated by CSC or overexpression of miR-487b targets, and decreased growth and metastatic potential of lung cancer cells in vivo. Collectively, these findings indicate that miR-487b is a tumor suppressor microRNA silenced by epigenetic mechanisms during tobacco-induced pulmonary carcinogenesis and suggest that DNA demethylating agents may be useful for activating miR-487b for lung cancer therapy.


Cancer Immunology, Immunotherapy | 2009

Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression.

Jennifer A. Wargo; Paul F. Robbins; Yong Li; Yangbing Zhao; Mona El-Gamil; Diana Caragacianu; Zhili Zheng; Julie A. Hong; Stephanie G. Downey; David S. Schrump; Steven A. Rosenberg; Richard A. Morgan

The therapeutic use of T cell receptor (TCR)-transduced peripheral blood lymphocytes (PBL) targeting tumor-associated antigens is emerging as a promising investigational treatment for patients with cancer. Initial response rates to therapy were low, suggesting the need to improve the function of TCR-transduced PBL. We constructed standard bicistronic retroviral vectors using an internal promoter or internal ribosomal entry site element as well as vectors incorporating coding sequences for 2A linker peptides between coding sequences for α and β chains targeting the cancer-testis (CT) antigen, NY-ESO-1. Incorporation of coding sequences for 2A linker peptides in the bicistronic TCR expression cassette resulted in up to a fourfold increase in TCR expression and a significant improvement in effector function as measured by interferon-gamma release following co-culture with peptide-pulsed targets and NY-ESO-1+ tumors. We also sought to enhance reactivity of TCR-transduced PBL against tumor targets by modulation of tumor antigen expression on target cells. Induction of NY-ESO-1 expression on tumor targets using the demethylating agent 5-aza-2′-deoxycytidine (alone or in combination with the histone deacetylase inhibitor depsipeptide) resulted in enhanced interferon-gamma secretion by the TCR-transduced PBL on culture with treated targets. Taken together, these results indicate that design of TCR-based vectors incorporating 2A linker peptides improves TCR expression and effector function of transduced PBL. Furthermore, induction of CT antigen expression through treatment of tumor targets with chromatin-remodeling agents may augment TCR-based immunotherapy targeting these antigens. These results have relevance for TCR-based gene therapies targeting common epithelial malignancies.


Cancer Research | 2011

Inhibition of Histone Lysine Methylation Enhances Cancer-Testis Antigen Expression in Lung Cancer Cells: Implications for Adoptive Immunotherapy of Cancer

Mahadev Rao; Nachimuthu Chinnasamy; Julie A. Hong; Yuwei Zhang; Mary Zhang; Sichuan Xi; Fang Liu; Victor E. Marquez; Richard A. Morgan; David S. Schrump

Cancer-testis antigens (CTA), such as NY-ESO-1, MAGE-A1, and MAGE-A3, are immunogenic proteins encoded by genes, which are normally expressed only in male germ cells but are activated by ill-defined epigenetic mechanisms in human tumors, including lung cancers. Previously, we reported induction of these CTAs in cancer cells, but not normal cells, by DNA-demethylating agents and histone deacetylase inhibitors using clinically achievable exposure conditions. In the present study, we evaluated chromatin alterations associated with repression/activation of cancer-testis genes in lung cancer cells to further develop gene-induction regimens for cancer immunotherapy. Repression of NY-ESO-1, MAGE-A1, and MAGE-A3 coincided with DNA hypermethylation, recruitment, and binding of polycomb-group proteins, and histone heterochromatin modifications within the promoters of these genes. Derepression coincided with DNA demethylation, dissociation of polycomb proteins, and presence of euchromatin marks within the respective promoters. Short hairpin RNAs were used to inhibit several histone methyltransferases (KMT) and histone demethylases (KDM) that mediate histone methylation and repress gene expression. Knockdown of KMT6, KDM1, or KDM5B markedly enhanced deoxyazacytidine (DAC)-mediated activation of these cancer-testis genes in lung cancer cells. DZNep, a pharmacologic inhibitor of KMT6 expression, recapitulated the effects of KMT6 knockdown. Following DAC-DZNep exposure, lung cancer cells were specifically recognized and lysed by allogeneic lymphocytes expressing recombinant T-cell receptors recognizing NY-ESO-1 and MAGE-A3. Combining DNA-demethylating agents with compounds, such as DZNep, that modulate histone lysine methylation may provide a novel epigenetic strategy to augment cancer-testis gene expression as an adjunct to adoptive cancer immunotherapy.


Cancer Research | 2012

Mithramycin Represses Basal and Cigarette Smoke-Induced Expression of ABCG2 and Inhibits Stem Cell Signaling in Lung and Esophageal Cancer Cells

Mary Zhang; Aarti Mathur; Yuwei Zhang; Sichuan Xi; Scott Atay; Julie A. Hong; Nicole Datrice; Trevor Upham; Clinton D. Kemp; R. Taylor Ripley; Gordon Wiegand; Itzhak Avital; Patricia Fetsch; Haresh Mani; Daniel Zlott; Robert W. Robey; Susan E. Bates; Xinmin Li; Mahadev Rao; David S. Schrump

Cigarette smoking at diagnosis or during therapy correlates with poor outcome in patients with lung and esophageal cancers, yet the underlying mechanisms remain unknown. In this study, we observed that exposure of esophageal cancer cells to cigarette smoke condensate (CSC) led to upregulation of the xenobiotic pump ABCG2, which is expressed in cancer stem cells and confers treatment resistance in lung and esophageal carcinomas. Furthermore, CSC increased the side population of lung cancer cells containing cancer stem cells. Upregulation of ABCG2 coincided with increased occupancy of aryl hydrocarbon receptor, Sp1, and Nrf2 within the ABCG2 promoter, and deletion of xenobiotic response elements and/or Sp1 sites markedly attenuated ABCG2 induction. Under conditions potentially achievable in clinical settings, mithramycin diminished basal as well as CSC-mediated increases in AhR, Sp1, and Nrf2 levels within the ABCG2 promoter, markedly downregulated ABCG2, and inhibited proliferation and tumorigenicity of lung and esophageal cancer cells. Microarray analyses revealed that mithramycin targeted multiple stem cell-related pathways in vitro and in vivo. Collectively, our findings provide a potential mechanistic link between smoking status and outcome of patients with lung and esophageal cancers, and support clinical use of mithramycin for repressing ABCG2 and inhibiting stem cell signaling in thoracic malignancies.

Collaboration


Dive into the Julie A. Hong's collaboration.

Top Co-Authors

Avatar

David S. Schrump

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mary Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dao M. Nguyen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sichuan Xi

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

R. Taylor Ripley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Scott Atay

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

G. Aaron Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ming Zhao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xinmin Li

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge