Julie A. Kerry
Eastern Virginia Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie A. Kerry.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Song Hee Lee; Robert F. Kalejta; Julie A. Kerry; Oliver J. Semmes; Christine M. O'Connor; Zia Khan; Benjamin A. Garcia; Thomas Shenk; Eain Murphy
Cell proteins can restrict the replication of viruses. Here, we identify the cellular BclAF1 protein as a human cytomegalovirus restriction factor and describe two independent mechanisms the virus uses to decrease its steady-state levels. Immediately following infection, the viral pp71 and UL35 proteins, which are delivered to cells within virions, direct the proteasomal degradation of BclAF1. Although BclAF1 reaccumulates through the middle stages of infection, it is subsequently down-regulated at late times by miR-UL112-1, a virus-encoded microRNA. In the absence of BclAF1 neutralization, viral gene expression and replication are inhibited. These data identify two temporally and mechanistically distinct functions used by human cytomegalovirus to down-regulate a cellular antiviral protein.
Cardiovascular Toxicology | 2005
Frank A. Lattanzio; David A. Tiangco; Christopher Osgood; Stephen J. Beebe; Julie A. Kerry; Barbara Y. Hargrave
To determine the cardiovascular molecular events associated with acute exposure to cocaine, the present study utilized in vivo analysis of left-ventricular heart function in adult rabbits fluorescence confocal microscopy of fluo-2, rhod-2, (5-(and-6) carboxy 2′, 7′ dichlorodihydrofluores-cein diacetate (carboxy-H2DCFDA), and JC-1 in H9C2 cells and gene expression microarray technology for analysis of gene activation in both rabbit ventricular tissue and H9C2 cells. In the rabbit, acute cocaine exposure (2 mg/kg) caused left-ventricular dysfunction and 0.1–10 mM cocaine increased cytosolic and mitochondrial calcium activity and mitochondrial membrane depolarization in H9C2 cells. A 3-min pretreatment of H9C2 cells by 10 μM verapamil, nifedipine, or nadolol inhibited calcium increases, but only 1 mM N-acetylcysteine (NAC) or 1 mM glutathione blocked mitochondrial membrane depolarization. Cocaine induced activation of genes in the rabbit heart and H9C2 cells including angiotensinogen, ADRB1, and c-reactive protein (CRP). In H9C2 cells NAC pretreatment blocked cocaine-mediated increases in CRP, FAS, FAS ligand, and cytokine receptor-like factor 1 (CRLF1) expression. Collectively, these data suggest that acute cocaine administration initiates cellular and genetic changes that, if chronically manifested, could cause cardiac deficits similar to those seen in heart failure and ischemia, such as ventricular dysfunction, cardiac arrhythmias, and cardiac remodeling.
Cardiovascular Toxicology | 2005
David A. Tiangco; Frank A. Lattanzio; Christopher Osgood; Stephen J. Beebe; Julie A. Kerry; Barbara Y. Hargrave
Abstract3,4-Methylenedioxymethamphetamine (MDMA) is an illicit psychoactive drug that has gained immense popularity among teenagers and young adults. The cardiovascular toxicological consequences of abusing this compound have not been fully characterized. The present study utilized a transient transfection/dual luciferase genetic reporter assay, fluorescence confocal microscopy, and gene expression macroarray technology to determine nuclear factor-κB (NF-κB) activity, intracellular calcium balance, mitochondrial depolarization, and gene transcription profiles, respectively, in cultured rat striated cardiac myocytes (H9c2) exposed to MDMA. At concentrations of 1×10−3M and 1×10−2M, MDMA significantly enhanced NF-κB reporter activity compared with 0 M (medium only) control. This response was mitigated by cotransfection with IκB for 1×10−3M but not 1×10−2M MDMA. MDMA significantly increased intracellular calcium at concentrations of 1×10−3M and 1×10−2M and caused mitochondrial depolarization at 1×10−2M. MDMA increased the transcription of genes that are considered to be biomarkers in cardiovascular disease and genes that respond to toxic indults. Selected gene activation was verified via temperature-gradient RT-PCR conducted with annealing temperatures ranging from 50°C to 65°C. Collectively, these results suggest that MDMA may be toxic to the heart through its ability to activate the myocardial NF-κB response, disrupt cytosolic calcium and mitochondrial homeostasis, and alter gene transcription.
Journal of Virology | 2005
Eva Forgacs; Saurabh K. Gupta; Julie A. Kerry; O. John Semmes
ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) viral protein Tax is a transactivator of transcription driven by the cognate viral long terminal repeat (LTR). Tax exerts its effect through three nonidentical copies of the Tax-responsive element (TxRE), a member of the asymmetric cyclic AMP response element (CRE) family of enhancer sequences. Transactivation is mediated via interaction of Tax with members of the CREB/ATF family bound to TxRE. We have identified a cellular repressor of transcription, activating transcription factor x (ATFx), as a novel Tax-binding protein. In addition to binding directly to Tax we show by electrophoretic mobility shift assay that ATFx binds to the TxRE enhancer element via the bZIP domain. The functional impact of this bridging interaction results in repression of both basal and Tax-induced transcription from the HTLV-1 LTR. ATFx is unique among ATF family of proteins in that it is cell cycle regulated and exerts a tight repressive control over apoptotic signaling. We propose that recruitment of ATFx to the HTLV-1 LTR serves to link viral transcription with critical events in cellular homeostasis.
Virology | 2008
Weiping Shen; Elizabeth Westgard; Liqun Huang; Michael D. Ward; Jodi L. Osborn; Nha H. Chau; Lindsay Collins; Benjamin Marcum; Margaret A. Koach; Jennifer Bibbs; O. John Semmes; Julie A. Kerry
The human cytomegalovirus tegument protein pp71 localizes to the nucleus immediately upon infection, and functions to initiate viral gene expression. Analysis of a series of random insertion mutations revealed that sequences within the mid region (MR) of pp71 are important for localization to the nucleus. Fusion of MR sequences with eGFP revealed that amino acids 94 to 300 were sufficient to target proteins to the nucleus. Random substitution mutagenesis within this domain resulted in two double substitution mutants, pp71P203T/T223M and pp71T228M/L275Q, with a predominantly cytoplasmic localization. Disruption of nuclear targeting resulted in relocalization of the fusion proteins to a distinct perinuclear region. Using tandem mass spectrometry, we determined that threonine 223 can be phosphorylated. Mutation of this residue to a phosphomimetic amino acid resulted in abrogation of nuclear targeting. These results strongly suggest that the intracellular trafficking of pp71 is regulated by phosphorylation.
Journal of Virology | 2005
Zaruhi Karabekian; Laura K. Hanson; Jacquelyn S. Slater; Neel K. Krishna; Lisa L. Bolin; Julie A. Kerry; Ann E. Campbell
ABSTRACT The murine cytomegalovirus (MCMV) proteins encoded by US22 genes M139, M140, and M141 function, at least in part, to regulate replication of this virus in macrophages. Mutant MCMV having one or more of these genes deleted replicates poorly in macrophages in culture and in the macrophage-dense environment of the spleen. In this report, we demonstrate the existence of stable complexes formed by the products of all three of these US22 genes, as well as a complex composed of the products of M140 and M141. These complexes form in the absence of other viral proteins; however, the pM140/pM141 complex serves as a requisite binding partner for the M139 gene products. Products from all three genes colocalize to a perinuclear region of the cell juxtaposed to or within the cis-Golgi region but excluded from the trans-Golgi region. Interestingly, expression of pM141 redirects pM140 from its predominantly nuclear residence to the perinuclear, cytoplasmic locale where these US22 proteins apparently exist in complex. Thus, complexing of these nonessential, early MCMV proteins likely confers a function(s) independent of each individual protein and important for optimal replication of MCMV in its natural host.
Journal of Virology | 2010
Lisa L. Bolin; Laura K. Hanson; Jacquelyn S. Slater; Julie A. Kerry; Ann E. Campbell
ABSTRACT Stable assembly of murine cytomegalovirus (MCMV) virions in differentiated macrophages is dependent upon the expression of US22 family gene M140. The M140 protein (pM140) exists in complex with products of neighboring US22 genes. Here we report that pM140 protects its binding partner, pM141, from ubiquitin-independent proteasomal degradation. Protection is conferred by a stabilization domain mapping to amino acids 306 to 380 within pM140, and this domain is functionally independent from the region that confers binding of pM140 to pM141. The M140 protein thus contains multiple domains that collectively confer a structure necessary to function in virion assembly in macrophages.
Journal of Virology | 2010
Siabhon M. Harris; Brady Bullock; Elizabeth Westgard; Hua Zhu; Richard M. Stenberg; Julie A. Kerry
ABSTRACT The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Journal of Biological Chemistry | 1998
Ricky W. Johnstone; Julie A. Kerry; Joseph A. Trapani
Journal of Virology | 1996
Julie A. Kerry; M A Priddy; T Y Jervey; C P Kohler; T L Staley; C D Vanson; T R Jones; A C Iskenderian; D G Anders; Richard M. Stenberg