Julie A. O'Brien
United States Military Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie A. O'Brien.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Michael J. Marino; David L. Williams; Julie A. O'Brien; Ornella Valenti; Terrence P. McDonald; Michelle K. Clements; Ruiping Wang; Anthony G. DiLella; J. Fred Hess; Gene G. Kinney; P. Jeffrey Conn
Parkinsons disease (PD) is a debilitating movement disorder that afflicts >1 million people in North America. Current treatments focused on dopamine-replacement strategies ultimately fail in most patients because of loss of efficacy and severe adverse effects that worsen as the disease progresses. The recent success of surgical approaches suggests that a pharmacological intervention that bypasses the dopamine system and restores balance in the basal ganglia motor circuit may provide an effective treatment strategy. We previously identified the metabotropic glutamate receptor 4 (mGluR4) as a potential drug target and predicted that selective activation of mGluR4 could provide palliative benefit in PD. We now report that N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a selective allosteric potentiator of mGluR4. This compound selectively potentiated agonist-induced mGluR4 activity in cultured cells expressing this receptor and did not itself act as an agonist. Furthermore, PHCCC potentiated the effect of l-(+)-2-amino-4-phosphonobutyric acid in inhibiting transmission at the striatopallidal synapse. Modulation of the striatopallidal synapse has been proposed as a potential therapeutic target for PD, in that it may restore balance in the basal ganglia motor circuit. Consistent with this, PHCCC produced a marked reversal of reserpine-induced akinesia in rats. The closely related analogue 7-(hydroxylimino)cyclopropachromen-1a-carboxamide ethyl ester, which does not potentiate mGluR4, had no effect in this model. These results are evidence for in vivo behavioral effects of an allosteric potentiator of mGluRs and suggest that potentiation of mGluR4 may be a useful therapeutic approach to the treatment of PD.
Neuropharmacology | 2014
Sophie Parmentier-Batteur; Peter Hutson; Karsten Menzel; Jason M. Uslaner; Britta A. Mattson; Julie A. O'Brien; Brian C. Magliaro; Thomas Forest; Craig A. Stump; Robert M. Tynebor; Neville J. Anthony; Thomas J. Tucker; Xufang Zhang; Robert P. Gomez; Sarah L. Huszar; Nathalie Lambeng; H. Fauré; Emannuel Le Poul; Sonia Poli; Thomas W. Rosahl; Jean-Philippe Rocher; Richard Hargreaves; Theresa M. Williams
Previous work has suggested that activation of mGlu5 receptor augments NMDA receptor function and thereby may constitute a rational approach addressing glutamate hypofunction in schizophrenia and a target for novel antipsychotic drug development. Here, we report the in vitro activity, in vivo efficacy and safety profile of 5PAM523 (4-Fluorophenyl){(2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-methylpiperidin-1-yl}methanone), a structurally novel positive allosteric modulator selective of mGlu5. In cells expressing human mGlu5 receptor, 5PAM523 potentiated threshold responses to glutamate in fluorometric calcium assays, but does not have any intrinsic agonist activity. 5PAM523 acts as an allosteric modulator as suggested by the binding studies showing that 5PAM523 did not displace the binding of the orthosteric ligand quisqualic acid, but did partially compete with the negative allosteric modulator, MPyEP. In vivo, 5PAM523 reversed amphetamine-induced locomotor activity in rats. Therefore, both the in vitro and in vivo data demonstrate that 5PAM523 acts as a selective mGlu5 PAM and exhibits anti-psychotic like activity. To study the potential for adverse effects and particularly neurotoxicity, brain histopathological exams were performed in rats treated for 4 days with 5PAM523 or vehicle. The brain exam revealed moderate to severe neuronal necrosis in the rats treated with the doses of 30 and 50 mg/kg, particularly in the auditory cortex and hippocampus. To investigate whether this neurotoxicity is mechanism specific to 5PAM523, similar safety studies were carried out with three other structurally distinct selective mGlu5 PAMs. Results revealed a comparable pattern of neuronal cell death. Finally, 5PAM523 was tested in mGlu5 knock-out (KO) and wild type (WT) mice. mGlu5 WT mice treated with 5PAM523 for 4 days at 100 mg/kg presented significant neuronal death in the auditory cortex and hippocampus. Conversely, mGlu5 KO mice did not show any neuronal loss by histopathology, suggesting that enhancement of mGlu5 function is responsible for the toxicity of 5PAM523. This study reveals for the first time that augmentation of mGlu5 function with selective allosteric modulators results in neurotoxicity.
ChemMedChem | 2006
Craig W. Lindsley; Zhijian Zhao; William Leister; Julie A. O'Brien; Wei Lemaire; David L. Williams; Tsing-Bau Chen; Raymond S.L. Chang; Maryann Burno; Marlene A. Jacobson; Cyrille Sur; Gene G. Kinney; Douglas J. Pettibone; Philip R. Tiller; Sheri Smith; Nancy N. Tsou; Mark E. Duggan; P. Jeffrey Conn; George D. Hartman
Design, Synthesis, and In Vivo Efficacy of Glycine Transporter-1 (GlyT1) Inhibitors Derived from a Series of [4-Phenyl-1(propylsulfonyl)piperidin-4-yl]methyl Benzamides Craig W. Lindsley,* Zhijian Zhao, William H. Leister, Julie O’Brien, Wei Lemaire, David L. Williams, Jr. , Tsing-Bau Chen, Raymond S. L. Chang, Maryann Burno, Marlene A. Jacobson, Cyrille Sur, Gene G. Kinney, Douglas J. Pettibone, Philip R. Tiller, Sheri Smith, Nancy N. Tsou, Mark E. Duggan, P. Jeffrey Conn, e] and George D. Hartman
Neuropharmacology | 2012
Sophie Parmentier-Batteur; Julie A. O'Brien; Scott M. Doran; Shannon J. Nguyen; Rosemarie Beth Flick; Jason M. Uslaner; Hank Chen; Eleftheria N. Finger; Theresa M. Williams; Marlene A. Jacobson; Pete H. Hutson
The glutamatergic hypofunction hypothesis of schizophrenia has led to the development of novel therapeutic strategies modulating NMDA receptor function. One of these strategies targets the activation of the metabotropic glutamate receptor 5 (mGlu5 receptor) using positive allosteric modulators (PAMs). Our goal was to evaluate the potential for repeated administration of the mGlu5 receptor PAM, CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide) (30 mg/kg) to induce tolerance to the anti-psychotic like effect using the amphetamine-induced hyperlocomotion rat model, and to produce receptor desensitization in mGlu5 receptor-enriched brain regions. CDPPB dose dependently reduced the locomotor response to amphetamine when administered acutely, and the same effect was observed following 7-day pre-treatment regime. In addition, 7-day dosing of CDPPB did not affect mGlu5 receptor density in the striatum, nor did it change mGlu5 receptor PAM-induced phosphorylation of NMDA, GluN1 and GluN2b, receptor subunits in striatum compared to the levels measured acutely. In contrast, in the frontal cortex, repeated administration of CDPPB decreased mGlu5 receptor density and resulted in a loss of its ability to increase GluN1 and GluN2b levels. Consistent with a reduction of cortical mGlu5 receptor density and phosphorylation, CDPPB (30 mg/kg) significantly affected sleep architecture as determined by cortical EEG at day one however by the seventh day of dosing all sleep changes were absent. Together these results suggest that the development of tolerance induced by the repeated treatment with the mGlu5 receptor PAM, CDPPB, may depend not only on the system being measured (sleep architecture vs psychostimulant induced hyperactivity), but also on the brain region involved with frontal cortex being a more susceptible region to receptor desensitization and internalization than striatum.
Bioorganic & Medicinal Chemistry Letters | 1995
Steven D. Young; Muriel C. Amblard; Susan F. Britcher; Vanessa E. Grey; Lee O. Tran; William C. Lumma; Joel R. Huff; William A. Schleif; Emilio E. Emini; Julie A. O'Brien; Douglas J. Pettibone
Abstract A variety of 2-heterocycle substituted 3-phenysulfonyl-5-chloroindoles were investigated as replacements for the 2-carboxamide functionality of the potent HIV-1 reverse transcriptase inhibitor L-737, 126. The 2-carboxamide series of compounds typified by L-737,126 have poor solubility. Replacement of the carboxamide moiety with a variety of heterocycles results in a series of potent enzyme inhibitors with equivalent ex vivo antiviral activity and improved physicochemical properties.
Life Sciences | 1995
Jeffrey R. Jasper; C. Meacham Harrell; Julie A. O'Brien; Douglas J. Pettibone
The human oxytocin (OT) receptor was stably expressed in 293 embryonic kidney cells (293/OTR), characterized pharmacologically and compared to human uterine myometrial receptors. The cloned receptor is expressed at a reasonably high density (0.82 fmole/microgram protein) and exhibits high affinity for [3H]OT (Kd = 0.32nM), similar to the value found in human myometrial tissue. The rank-order of potency for various antagonist and agonist ligands from several structural classes is also similar between the cloned and native receptor, as seen in a comparison of their inhibitory constants for [3H]OT binding. Agonist affinity at the cloned OT receptor is decreased by guanine nucleotide analogs, demonstrating functional G-protein-coupling. The OT receptor in 293 cells, like in human myometrium, is also coupled to the inositol phosphate pathway. In 293/OTR cells, OT stimulates inositol phosphate accumulation with an EC50 = 4.1 nM, an effect blocked by a potent and selective OT antagonist, L-366,948. Additionally, the cloned receptor in 293 cells desensitizes to high concentrations of OT, similar to the desensitization in myometrial tissue and also described for several other G-protein-coupled receptors. These results illustrate the utility of the 293 cell line for expressing human OT receptors in an environment quite comparable to the native myometrial tissue.
Journal of Medicinal Chemistry | 2016
Abbas Walji; Eric Hostetler; Harold G. Selnick; Zhizhen Zeng; Patricia Miller; Idriss Bennacef; Cristian Salinas; Brett Connolly; Liza Gantert; Marie A. Holahan; Stacey S. O’Malley; Mona Purcell; Kerry Riffel; Jing Li; Jaume Balsells; Julie A. O'Brien; Stacey Melquist; Aileen Soriano; Xiaoping Zhang; Aimie M. Ogawa; Serena Xu; Elizabeth M. Joshi; Joseph Della Rocca; Fred Hess; Joel B. Schachter; David Hesk; David J. Schenk; Arie Struyk; Kerim Babaoglu; Talakad Lohith
Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimers disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.
ACS Medicinal Chemistry Letters | 2010
Robert M. Garbaccio; Edward J. Brnardic; Mark E. Fraley; George D. Hartman; Pete H. Hutson; Julie A. O'Brien; Brian C. Magliaro; Jason M. Uslaner; Sarah L. Huszar; Kerry L. Fillgrove; James Small; Cuyue Tang; Yuhsin Kuo; Marlene A. Jacobson
Novel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.
Biological Chemistry | 2001
J. Fred Hess; Patricia J. Hey; Tsing-Bau Chen; Julie A. O'Brien; Stacey O'Malley; Douglas J. Pettibone; Raymond S. L. Chang
Abstract The dog is a valuable animal model in the study of the physiological role of both the B1 and B2 bradykinin receptors. To more thoroughly characterize the pharmacological properties of the canine kinin receptors we isolated the cDNA sequence encoding the B1 and B2 bradykinin receptor subtypes and overexpressed them in Chinese hamster ovary (CHO) cells. The cDNA sequence of the canine B1 bradykinin receptor encodes a protein comprised of 350 amino acids that is 76% identical to the human B1 bradykinin receptor. The cDNA sequence of the canine B2 bradykinin receptor encodes a protein of 392 amino acids that is 81% identical to the human B2 bradykinin receptor. The amino acid sequence of the canine B1 and B2 receptors are 35% identical. Pharmacological studies of the cloned receptors revealed that the agonist affinity of the dog B1 receptor is similar to the rodent B1 receptors, and differs from the human form in that there is no preference for the presence of the Nterminal Lys residue of [desArg10]Lysbradykinin. Significantly, the B1 receptor antagonist [desArg9,Leu8]BK behaves as partial agonist on the cloned dog B1 receptor. The dog B2 receptor exhibits the classical pharmacological properties of this receptor subtype.
Molecular Pharmacology | 2010
Marlene A. Jacobson; Constantine Kreatsoulas; Danette Pascarella; Julie A. O'Brien; Cyrille Sur
Activation of M1 muscarinic receptors occurs through orthosteric and allosteric binding sites. To identify critical residues, site-directed mutagenesis and chimeric receptors were evaluated in functional calcium mobilization assays to compare orthosteric agonists, acetylcholine and xanomeline, M1 allosteric agonists AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride), TBPB (1-[1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one), and the clozapine metabolite N-desmethylclozapine. A minimal epitope has been defined for AC-42 that comprises the first 45 amino acids, the third extracellular loop, and seventh transmembrane domain (Mol Pharmacol 61:1297–1302, 2002). Using chimeric M1 and M3 receptor constructs, the AC-42 minimal epitope has been extended to also include transmembrane II. Phe77 was identified as a critical residue for maintenance of AC-42 and TBPB agonist activity. In contrast, the functional activity of N-desmethylclozapine did not require Phe77. To further map the binding site of AC-42, TBPB, and N-desmethylclozapine, point mutations previously reported to affect activities of M1 orthosteric agonists and antagonists were studied. Docking into an M1 receptor homology model revealed that AC-42 and TBPB share a similar binding pocket adjacent to the orthosteric binding site at the opposite face of Trp101. In contrast, the activity of N-desmethylclozapine was generally unaffected by the point mutations studied, and the docking indicated that N-desmethylclozapine bound to a site distinct from AC-42 and TBPB overlapping with the orthosteric site. These results suggest that structurally diverse allosteric agonists AC-42, TBPB, and N-desmethylclozapine may interact with different subsets of residues, supporting the hypothesis that M1 receptor activation can occur through at least three different binding domains.