Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie A. Sterling is active.

Publication


Featured researches published by Julie A. Sterling.


Cancer Research | 2011

TGF-β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling

Rachelle W. Johnson; Mai P. Nguyen; Susan S. Padalecki; Barry Grubbs; Alyssa R. Merkel; Babatunde O. Oyajobi; Lynn M. Matrisian; Gregory R. Mundy; Julie A. Sterling

Breast cancer frequently metastasizes to bone, in which tumor cells receive signals from the bone marrow microenvironment. One relevant factor is TGF-β, which upregulates expression of the Hedgehog (Hh) signaling molecule, Gli2, which in turn increases secretion of important osteolytic factors such as parathyroid hormone-related protein (PTHrP). PTHrP inhibition can prevent tumor-induced bone destruction, whereas Gli2 overexpression in tumor cells can promote osteolysis. In this study, we tested the hypothesis that Hh inhibition in bone metastatic breast cancer would decrease PTHrP expression and therefore osteolytic bone destruction. However, when mice engrafted with human MDA-MB-231 breast cancer cells were treated with the Hh receptor antagonist cyclopamine, we observed no effect on tumor burden or bone destruction. In vitro analyses revealed that osteolytic tumor cells lack expression of the Hh receptor, Smoothened, suggesting an Hh-independent mechanism of Gli2 regulation. Blocking Gli signaling in metastatic breast cancer cells with a Gli2-repressor gene (Gli2-rep) reduced endogenous and TGF-β-stimulated PTHrP mRNA expression, but did not alter tumor cell proliferation. Furthermore, mice inoculated with Gli2-Rep-expressing cells exhibited a decrease in osteolysis, suggesting that Gli2 inhibition may block TGF-β propagation of a vicious osteolytic cycle in this MDA-MB-231 model of bone metastasis. Accordingly, in the absence of TGF-β signaling, Gli2 expression was downregulated in cells, whereas enforced overexpression of Gli2 restored PTHrP activity. Taken together, our findings suggest that Gli2 is required for TGF-β to stimulate PTHrP expression and that blocking Hh-independent Gli2 activity will inhibit tumor-induced bone destruction.


Bone | 2011

Advances in the biology of bone metastasis: how the skeleton affects tumor behavior.

Julie A. Sterling; James R. Edwards; T. John Martin; Gregory R. Mundy

It is increasingly evident that the microenvironment of bone can influence the cancer phenotype in many ways that favor growth in bone. The ability of cancer cells to adhere to bone matrix and to promote osteoclast formation are key requirements for the establishment and growth of bone metastases. Several cytokine products of breast cancers (e.g. PTHrP, IL-11, IL-8) have been shown to act upon host cells of the bone microenvironment to promote osteoclast formation, allowing for excessive bone resorption. The increased release of matrix-derived growth factors, especially TGF-β, acts back upon the tumor to facilitate further tumor expansion and enhance cytokine production, and also upon osteoblasts to suppress bone formation. This provides a self-perpetuating cycle of bone loss and tumor growth within the skeleton. Other contributing factors favoring tumor metastasis and colonization in bone include the unique structure and stiffness of skeletal tissue, along with the diverse cellular composition of the marrow environment (e.g. bone cells, stromal fibroblasts, immune cells), any of which can contribute to the phenotypic changes that can take place in metastatic deposits that favor their survival. Additionally, it is also apparent that breast cancer cells begin to express different bone specific proteins as well as proteins important for normal breast development and lactation that allow them to grow in bone and stimulate bone destruction. Taken together, these continually emerging areas of study suggest new potential pathways important in the pathogenesis of bone metastasis and potential areas for targeting therapeutics.


Cancer Research | 2006

The Hedgehog Signaling Molecule Gli2 Induces Parathyroid Hormone-Related Peptide Expression and Osteolysis in Metastatic Human Breast Cancer Cells

Julie A. Sterling; Babatunde O. Oyajobi; Barry Grubbs; Susan S. Padalecki; Steve Muñoz; Anjana Gupta; Beryl Story; Ming Zhao; Gregory R. Mundy

Parathyroid hormone-related peptide (PTHrP) is a major factor involved in tumor-induced osteolysis caused by breast cancers that have metastasized to bone. However, the molecular mechanisms that mediate PTHrP production by breast cancer cells are not entirely clear. We hypothesized that Gli2, a downstream transcriptional effector of the Hedgehog (Hh) signaling pathway, regulates PTHrP expression in metastatic breast cancer because the Hh pathway regulates physiologic PTHrP expression in the developing growth plate. Here, we show that Gli2 is expressed in several human cancer cell lines that cause osteolytic lesions in vivo and produce PTHrP (MDA-MB-231, RWGT2, and PC-3) but is not expressed in nonosteolytic cancer cell lines that do not secrete PTHrP (MCF-7, ZR-75, and T47D). Transient expression of Gli2 in MDA-MB-231 and MCF-7 breast cancer cells increased PTHrP promoter-luciferase activity dose dependently. Stable expression of Gli2 in MDA-MB-231 cells resulted in an increase in PTHrP protein in the conditioned medium. Alternatively, MDA-MB-231 cells stably transfected with Gli2-EnR, a repressor of Gli2 activity, exhibited a 72% to 93% decrease in PTHrP mRNA by quantitative real-time PCR when compared with control cells. To examine the effects of Gli2 on breast cancer-mediated osteolysis in vivo, athymic nude mice were inoculated with MDA-MB-231 cells stably expressing Gli2 or the empty vector. Following tumor cell inoculation via the left cardiac ventricle, Gli2-expressing tumors caused significantly more osteolysis. Together, these data suggest that PTHrP expression and osteolysis in vivo in human breast cancer cells is driven at least in part by Gli2.


PLOS Biology | 2012

Stimulation of Host Bone Marrow Stromal Cells by Sympathetic Nerves Promotes Breast Cancer Bone Metastasis in Mice

J. Preston Campbell; Matthew R. Karolak; Yun-Yun Ma; Daniel S. Perrien; S. Kathryn Masood-Campbell; Niki Penner; Steve Muñoz; Andries Zijlstra; Xiangli Yang; Julie A. Sterling; Florent Elefteriou

The activation of sympathetic nerves by psychosocial stress creates a favorable environment in bone for the establishment of cancer cells in a mouse model of breast cancer.


Journal of Bone and Mineral Metabolism | 1991

Cytokines and Bone Remodeling

Gregory R. Mundy; Babatunde O. Oyajobi; Gloria Gutierrez; Julie A. Sterling; Susan S. Padalecki; Florent Elefteriou; Ming Zhao

Publisher Summary Bone is continuously remodeled in normal individuals and this is achieved via a finely regulated balance between the processes of bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. This bone remodeling is regulated, in part, by local factors including cytokines generated in the bone microenvironment. The purpose of this chapter is to summarize what is currently known about the role of cytokines and their receptors in bone remodeling. Recent advances in molecular biological techniques have meant that most of the biological activities ascribed to cytokines have now been associated with specific molecules, and their receptors identified and molecularly cloned. Several cytokines and their cognate receptors have been shown to be expressed by bone cells, marrow cells, or accessory cells in the bone microenvironment. Moreover, studies using knockout and transgenic mice have increased the understanding of the complex signal transduction mechanisms utilized by cytokines and are opening up new and exciting areas of study. Cytokines tend to be pleiotropic and multifactorial, and may have overlapping and seemingly redundant biological effects. Some of this redundancy is apparent in the receptor mechanisms and signal transduction pathways used by groups of cytokines. Classic examples that illustrate this vividly are the various cytokines belonging to the interleukin (IL)-6 family, such as IL-6, leukemia inhibitory factor, oncostatin-M, and IL-11, which utilize a common signal transduction protein known as gp130. These cytokines bind to distinct membrane-associated receptors, which form hetero- or homo-dimers upon binding to the ligand. Further, there is now a body of data derived from in vivo studies in animals which show that over- or under-production of certain cytokines cause profound effects on bone. These fundamental observations have the potential of not only increasing the understanding of the pathophysiology of osteoporosis, but also leading to new and better forms of therapy using these molecules as targets for drug discovery programs.


PLOS ONE | 2010

Matrix Rigidity Induces Osteolytic Gene Expression of Metastatic Breast Cancer Cells

Nazanin S. Ruppender; Alyssa R. Merkel; T. John Martin; Gregory R. Mundy; Julie A. Sterling; Scott A. Guelcher

Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone.


PLOS ONE | 2011

Anti-Transforming Growth Factor ß Antibody Treatment Rescues Bone Loss and Prevents Breast Cancer Metastasis to Bone

Swati Biswas; Jeffry S. Nyman; JoAnn Alvarez; Anwesa Chakrabarti; Austin Ayres; Julie A. Sterling; James R. Edwards; Tapasi Rana; Rachelle W. Johnson; Daniel S. Perrien; Scott Lonning; Yu Shyr; Lynn M. Matrisian; Gregory R. Mundy

Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.


OncoImmunology | 2012

Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction.

Sabrina Danilin; Alyssa R. Merkel; Joshua R. Johnson; Rachelle W. Johnson; James R. Edwards; Julie A. Sterling

Myeloid-derived suppressor cells (MDSCs), identified as Gr1+CD11b+ cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1+CD11b+ cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn’t induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1+CD11b+ cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor β expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP+TRAP+ cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors.


Bone | 2011

Longitudinal live animal micro-CT allows for quantitative analysis of tumor-induced bone destruction

Lindsay C. Johnson; Rachelle W. Johnson; Steve Muñoz; Gregory R. Mundy; Todd E. Peterson; Julie A. Sterling

The majority of breast cancer and prostate cancer patients with metastatic disease will go on to develop bone metastases, which contribute largely to the patients morbidity and mortality. Numerous small animal models of cancer metastasis to bone have been developed to study tumor-induced bone destruction, but the advancement of imaging modalities utilized for these models has lagged significantly behind clinical imaging. Therefore, there is a significant need for improvements to live small animal imaging, particularly when obtaining high-resolution images for longitudinal quantitative analyses. Recently, live animal micro-computed tomography (μCT) has gained popularity due to its ability to obtain high-resolution 3-dimensional images. However, the utility of μCT in bone metastasis models has been limited to end-point analyses due to off-target radiation effects on tumor cells. We hypothesized that live animal in vivo μCT can be utilized to perform reproducible and quantitative longitudinal analyses of bone volume in tumor-bearing mice, particularly in a drug treatment model of breast cancer metastasis to bone. To test this hypothesis, we utilized the MDA-MB-231 osteolytic breast cancer model in which the tumor cells are inoculated directly into the tibia of athymic nude mice and imaged mice weekly by Faxitron (radiography), Imtek μCT (in vivo), and Maestro (GFP-imaging). Exvivo μCT and histology were performed at end point for validation. After establishing a high-resolution scanning protocol for the Imtek CT, we determined whether clear, measurable differences in bone volume were detectable in mice undergoing bisphosphonate drug treatments. We found that in vivo μCT could be used to obtain quantifiable and longitudinal images of the progression of bone destruction over time without altering tumor cell growth. In addition, we found that we could detect lesions as early as week 1 and that this approach could be used to monitor the effect of drug treatment on bone. Taken together, these data indicate that in vivo μCT is an effective and reproducible method for longitudinal monitoring of tumor-associated bone destruction in mouse models of tumor-induced bone disease.


Molecular Cancer Research | 2012

Loss of TGF-β Responsiveness in Prostate Stromal Cells Alters Chemokine Levels and Facilitates the Development of Mixed Osteoblastic/Osteolytic Bone Lesions

Xiaohong Li; Julie A. Sterling; Kang Hsien Fan; Robert L. Vessella; Yu Shyr; Simon W. Hayward; Lynn M. Matrisian; Neil A. Bhowmick

Loss of TGF-β type II receptor (TβRII, encoded by Tgfbr2) expression in the prostate stroma contributes to prostate cancer initiation, progression, and invasion. We evaluated whether TβRII loss also affected prostate cancer bone metastatic growth. Immunohistologic analysis revealed that TβRII expression was lost in cancer-associated fibroblasts in human prostate cancer bone metastatic tissues. We recapitulated the human situation with a conditional stromal Tgfbr2 knockout (Tgfbr2-KO) mouse model. Conditioned media from primary cultured Tgfbr2-KO or control Tgfbr2-flox prostatic fibroblasts (koPFCM or wtPFCM, respectively) were applied to C4-2B prostate cancer cells before grafting the cells tibially. We found that koPFCM promoted prostate cancer cell growth in the bone and development of early mixed osteoblastic/osteolytic bone lesions. Furthermore, the koPFCM promoted greater C4-2B adhesion to type-I collagen, the major component of bone matrix, compared to wtPFCM-treated C4-2B. Cytokine antibody array analysis revealed that koPFCM had more than two-fold elevation in granulocyte colony-stimulating factor and CXCL1, CXCL16, and CXCL5 expression relative to wtPFCM. Interestingly, neutralizing antibodies of CXCL16 or CXCL1 were able to reduce koPFCM-associated C4-2B type-I collagen adhesion to that comparable with wtPFCM-mediated adhesion. Collectively, our data indicate that loss of TGF-β responsiveness in prostatic fibroblasts results in upregulation of CXCL16 and CXCL1 and that these paracrine signals increase prostate cancer cell adhesion in the bone matrix. These microenvironment changes at the primary tumor site can mediate early establishment of prostate cancer cells in the bone and support subsequent tumor development at the metastatic site. Mol Cancer Res; 10(4); 494–503. ©2012 AACR.

Collaboration


Dive into the Julie A. Sterling's collaboration.

Top Co-Authors

Avatar

Alyssa R. Merkel

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachelle W. Johnson

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffry S. Nyman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Perrien

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge