Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Beckstead is active.

Publication


Featured researches published by Julie Beckstead.


Oikos | 1997

Seed germination regulation in Bromus tectorum (Poaceae) and its ecological significance

Susan E. Meyer; Phil S. Allen; Julie Beckstead

Bromus tectorum is a winter annual grass that has become extensively naturalized in western North America. Its seeds are usually at least conditionally dormant at dispersal and lose dormancy through dry afterripening. Germination response to temperature for recently harvested seeds and rate of change in germination response during afterripening were examined for collections from 21 western North American populations representing a wide array of habitats. Analysis of variance showed highly significant among-population differences in germination response variables. Principal components analysis of 20 germination variables revealed groups of populations that could be characterized by distinct response syndromes. Degree of dormancy at summer temperatures in recently harvested seeds as well as rate of dormancy loss during dry storage could be related to the risk of premature summer germination in different habitats. Mojave Desert populations showed the most clearly differentiated response. Populations from Intermountain desert and foothill habitats showed intermediate responses and did not form distinct groups. Montane populations showed the widest variation. Fully afterripened seeds from all populations were nondormant and could germinate quickly across a wide temperature range. These results demonstrate the existence of adaptively significant variation in germination response. Such variation probably represents the beginning of genetic differentiation as a result of selection among and within founder populations. Lack of a consistent relationship with habitat reflects the stochastic nature of colonization and the fact that diverse germination strategies may permit persistence, especially in less extreme habitats.


Biological Invasions | 2004

An experimental test of resistance to cheatgrass invasion: limiting resources at different life stages

Julie Beckstead; Carol K. Augspurger

Variable densities of an invasive species may represent variation in invasion resistance, due to variation in resource availability. This study determined whether low- and high-density cheatgrass (Bromus tectorum L.) patches within a shadscale-bunchgrass community of western Utah, USA, can be explained by variation in resource availability. It also explored the possible role of seed limitation and enemy pressure on invasion patterns. Two parallel field experiments were conducted:(1) increasing resources within low-density cheatgrass patches and, conversely (2) reducing resources within high-density cheatgrass patches. Treatments were applied at three life stages separately and across all stages. In low-density cheatgrass patches (assumed to represent high resistance), a disturbance that reduced soil compaction had the strongest positive effect, significantly increasing biomass by 250% and density by 104% in comparison to the control. The second strongest effect was reducing neighbors (native grasses), which significantly increased cheatgrass biomass and density. These results indicate that resources are present in low-density cheatgrass patches, but they are unavailable without disturbance and/or are exploited by competitors, and hence represent resistance to invasion. In high-density cheatgrass patches (assumed to represent low resistance), nitrogen availability was important in maintaining cheatgrass densities. Reducing nitrogen (via sucrose addition) significantly decreased density (by 37%) but not biomass. Life stages of cheatgrass were differentially affected by these resource manipulations. In addition, herbivore (primarily grasshoppers) and pathogen (head smut) pressures were documented to affect cheatgrass density, but did not explain resistance patterns. Instead, we found that differential resource availability explains the observed variation in cheatgrass density, and variation in natural resistance.


Seed Science Research | 2012

Direct and indirect effects of plant litter on a seed–pathogen interaction in Bromus tectorum seed banks

Julie Beckstead; Lauren Miller; Brian M. Connolly

The naturally occurring fungal seed pathogen, Pyrenophora semeniperda , reduces the seed bank of Bromus tectorum but the role of plant litter in this seed–pathogen interaction is unexplored. To investigate the direct and indirect effects of litter on this interaction, we first collected field seed-bank samples from low and high Bromus litter patches. From these data, we explored the relationship between litter depth, seed-bank density and seed mortality from P. semeniperda . Second, we manipulated the fungal stages (conidial spores and mycelium) in/on the litter through sterilization techniques, to measure the direct effect of litter on seed death. Third, for indirect effects, we manipulated litter levels and held seed density and inoculum constant to determine whether Bromus litter could modify the seed zone microsites to favour disease. We found that seed-bank samples from high-litter patches contained higher field-killed seed densities compared with low-litter patches, although the percent difference of disease between litter patch types varied among sites and years (e.g. 80% to 46%). In testing the direct effects of litter on the seed–pathogen interaction, we found that litter can act as a direct inoculum source for the pathogen in the early summer but decreases in disease transmission by the following spring when the litter naturally is in contact with seeds. Investigating indirect effects, we found four times as many pathogen-killed seeds in high-litter treatments as compared with low-litter treatments when inoculum loads and seed densities were held constant. In addition, we found that litter influences the seed–pathogen interaction through density-dependent disease transmission. Our findings demonstrate the ecological importance of litter in semi-arid environments as it influences disease levels of a seed pathogen by direct and indirect means.


Plant Ecology | 2014

Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora semeniperda. We measured potential host range in laboratory experiments at high inoculum loads with 26 grass species, including the primary host Bromus tectorum, and developed models to predict susceptibility and tolerance based on host traits, including germination speed, seed hardness, seed size, and phylogenetic relations. We also examined pathogen and host density effects on infection and mortality. All species tested were at least somewhat susceptible to the pathogen at high inoculum loads, but both infection and mortality varied widely. Species more closely related to the original host (B. tectorum) were more susceptible to infection, whereas species with slower germination were less tolerant and therefore more likely to suffer mortality. Infection and mortality were sharply reduced as inoculum load was reduced. Intermediate loads had major negative impacts on dormant B. tectorum seeds but generally minimal effects on native species. In addition, field seed bank studies determined that P. semeniperda rarely exploits native grass species as hosts. This marked reduction in realized host range relative to potential host range indicates that laboratory host range studies are potentially a poor predictor of either the current or possible future realized host range for wildland plant pathogens.


Rangeland Ecology & Management | 2011

Fire Effects on the Cheatgrass Seed Bank Pathogen Pyrenophora semeniperda

Julie Beckstead; Laura E. Street; Susan E. Meyer; Phil S. Allen

Abstract The generalist fungal pathogen Pyrenophora semeniperda occurs primarily in cheatgrass (Bromus tectorum) seed banks, where it causes high mortality. We investigated the relationship between this pathogen and its cheatgrass host in the context of fire, asking whether burning would facilitate host escape from the pathogen or increase host vulnerability. We used a series of laboratory and field experiments to address the ability of host seeds and pathogen life stages to survive fire. First, we determined the thermal death point (TDP50; temperature causing 50% mortality) of seeds and pathogen propagules at two time intervals using a muffle furnace. We then measured peak fire temperatures in prescribed burns at sites in Utah and Washington and quantified seed and fungal propagule survival using pre- and postburn seed bank sampling and inoculum bioassays. Finally, we investigated the survival of both seeds and pathogen after wildfires. We found that radiant heat generated by both prescribed and wild cheatgrass monoculture fires was generally not sufficient to kill either host seeds or pathogen propagules; most mortality was apparently due to direct consumption by flames. The 5-min mean TDP50 was 164°C for pathogen propagules and 148°C for host seeds, indicating that the pathogen is more likely to survive fire than the seeds. Peak fire temperature at the surface in the prescribed burns averaged 130°C. Fire directly consumed 85–98% of the viable seed bank, but prescribed burns and wildfires generally did not lead to dramatic reductions in pathogen inoculum loads. We conclude that the net effect of fire on this pathosystem is not large. Rapid postburn recovery of both host and associated pathogen populations is the predicted outcome. Postfire management of residual cheatgrass seed banks should be facilitated by the persistent presence of this seed bank pathogen.


Archive | 2016

Community Ecology of Fungal Pathogens on Bromus tectorum

Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact dynamically with abiotic factors such as interannual variation in weather, with other soil microorganisms, with their hosts, and with each other to create spatially and temporally varying patterns of endemic or epidemic disease. Five principal soilborne pathogens, Ustilago bullata Berk. (head smut pathogen), Tilletia bromi (Brockm.) Nannf. (chestnut bunt pathogen), Pyrenophora semeniperda (Brittlebank & Adams) Shoemaker (black fingers of death pathogen), Fusarium Link sp. n. (Fusarium seed rot pathogen), and a new species in the Rutstroemiaceae (bleach blonde syndrome pathogen), are known to have sometimes major impacts on B. tectorum seed bank dynamics, seedling emergence, and seed production. These pathogens exhibit niche specialization, so that they are rarely in direct competition. They sometimes interact to increase the total impact on B. tectorum stand structure, which can result in stand failure or “die-off.” Die-offs represent areas where B. tectorum has been controlled by natural processes, suggesting that these areas might be suitable targets for restoration. Naturally occurring fungal pathogens that can have a strong negative impact on B. tectorum success have also been considered as candidate organisms for B. tectorum biocontrol using an augmentative mycoherbicidal strategy.


Fungal Biology | 2015

Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda.

Connor W. Barth; Susan E. Meyer; Julie Beckstead; Phil S. Allen

Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were measured on PDA amended to achieve a series of five water potentials (ca. 0 to -6 MPa) at six constant temperatures (5-30 °C). Conidial germination was described with alternative population-based models using constant or variable base and maximum temperature and water potential parameters. Mycelial growth was modeled as a continuous, linear process with constant base temperature and base water potential. Models based on HTT showed reasonable fit to germination and growth rate data sets. The best-fit conidial germination model (R(2) = 0.859) was based on variable base and maximum temperature as a function of water potential. The good fit of the linear mycelial growth model (R(2) = 0.916) demonstrated the utility of HTT for modeling continuous as well as population-based processes. HTT modeling may be a useful approach to the quantification of germination and growth processes in a wide range of filamentous fungi.


PLOS ONE | 2016

Lack of Host Specialization on Winter Annual Grasses in the Fungal Seed Bank Pathogen Pyrenophora semeniperda

Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman

Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen.


Botany | 1996

Bromus tectorum seed germination: between-population and between-year variation

Julie Beckstead; Susan E. Meyer; Phil S. Allen


Journal of Ecology | 2010

Cheatgrass facilitates spillover of a seed bank pathogen onto native grass species

Julie Beckstead; Susan E. Meyer; Brian M. Connolly; Michael Huck; Laura E. Street

Collaboration


Dive into the Julie Beckstead's collaboration.

Top Co-Authors

Avatar

Susan E. Meyer

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Phil S. Allen

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Suzette Clement

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian M. Connolly

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Duane C. Smith

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Robinson

Bureau of Land Management

View shared research outputs
Researchain Logo
Decentralizing Knowledge