Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie C. Price is active.

Publication


Featured researches published by Julie C. Price.


Annals of Neurology | 2004

Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B

William E. Klunk; Henry Engler; Agneta Nordberg; Yanming Wang; Gunnar Blomqvist; Daniel P. Holt; Mats Bergström; Irina Savitcheva; Guo Feng Huang; Sergio Estrada; Birgitta Ausén; Manik L. Debnath; Julien Barletta; Julie C. Price; Johan Sandell; Brian J. Lopresti; Anders Wall; Pernilla Koivisto; Gunnar Antoni; Chester A. Mathis; Bengt Långström

This report describes the first human study of a novel amyloid‐imaging positron emission tomography (PET) tracer, termed Pittsburgh Compound‐B (PIB), in 16 patients with diagnosed mild AD and 9 controls. Compared with controls, AD patients typically showed marked retention of PIB in areas of association cortex known to contain large amounts of amyloid deposits in AD. In the AD patient group, PIB retention was increased most prominently in frontal cortex (1.94‐fold, p = 0.0001). Large increases also were observed in parietal (1.71‐fold, p = 0.0002), temporal (1.52‐fold, p = 0.002), and occipital (1.54‐fold, p = 0.002) cortex and the striatum (1.76‐fold, p = 0.0001). PIB retention was equivalent in AD patients and controls in areas known to be relatively unaffected by amyloid deposition (such as subcortical white matter, pons, and cerebellum). Studies in three young (21 years) and six older healthy controls (69.5 ± 11 years) showed low PIB retention in cortical areas and no significant group differences between young and older controls. In cortical areas, PIB retention correlated inversely with cerebral glucose metabolism determined with 18F‐fluorodeoxyglucose. This relationship was most robust in the parietal cortex (r = −0.72; p = 0.0001). The results suggest that PET imaging with the novel tracer, PIB, can provide quantitative information on amyloid deposits in living subjects.


Neurology | 2007

IMAGING β-AMYLOID BURDEN IN AGING AND DEMENTIA

Christopher C. Rowe; Steven Ng; Uwe Ackermann; Sylvia Gong; Kerryn E. Pike; Greg Savage; Tiffany Cowie; Kerryn Dickinson; Paul Maruff; David Darby; Clare Smith; Michael M Woodward; John R. Merory; Henri Tochon-Danguy; Graeme O'Keefe; William E. Klunk; Chet Mathis; Julie C. Price; Colin L. Masters; Victor L. Villemagne

Objective: To compare brain β-amyloid (Aβ) burden measured with [11C]Pittsburgh Compound B (PIB) PET in normal aging, Alzheimer disease (AD), and other dementias. Methods: Thirty-three subjects with dementia (17 AD, 10 dementia with Lewy bodies [DLB], 6 frontotemporal dementia [FTD]), 9 subjects with mild cognitive impairment (MCI), and 27 age-matched healthy control subjects (HCs) were studied. Aβ burden was quantified using PIB distribution volume ratio. Results: Cortical PIB binding was markedly elevated in every AD subject regardless of disease severity, generally lower and more variable in DLB, and absent in FTD, whereas subjects with MCI presented either an “AD-like” (60%) or normal pattern. Binding was greatest in the precuneus/posterior cingulate, frontal cortex, and caudate nuclei, followed by lateral temporal and parietal cortex. Six HCs (22%) showed cortical uptake despite normal neuropsychological scores. PIB binding did not correlate with dementia severity in AD or DLB but was higher in subjects with an APOE-ε4 allele. In DLB, binding correlated inversely with the interval from onset of cognitive impairment to diagnosis. Conclusions: Pittsburgh Compound B PET findings match histopathologic reports of β-amyloid (Aβ) distribution in aging and dementia. Noninvasive longitudinal studies to better understand the role of amyloid deposition in the course of neurodegeneration and to determine if Aβ deposition in nondemented subjects is preclinical AD are now feasible. Our findings also suggest that Aβ may influence the development of dementia with Lewy bodies, and therefore strategies to reduce Aβ may benefit this condition.


JAMA Neurology | 2008

Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly

Howard J. Aizenstein; Robert D. Nebes; Judith Saxton; Julie C. Price; Chester A. Mathis; Nicholas D. Tsopelas; Scott K. Ziolko; Jeffrey A. James; Beth E. Snitz; Patricia R. Houck; Wenzhu Bi; Ann D. Cohen; Brian J. Lopresti; Steven T. DeKosky; Edythe M. Halligan; William E. Klunk

OBJECTIVE To characterize the prevalence of amyloid deposition in a clinically unimpaired elderly population, as assessed by Pittsburgh Compound B (PiB) positron emission tomography (PET) imaging, and its relationship to cognitive function, measured with a battery of neuropsychological tests. DESIGN Subjects underwent cognitive testing and PiB PET imaging (15 mCi for 90 minutes with an ECAT HR+ scanner). Logan graphical analysis was applied to estimate regional PiB retention distribution volume, normalized to a cerebellar reference region volume, to yield distribution volume ratios (DVRs). SETTING University medical center. PARTICIPANTS From a community-based sample of volunteers, 43 participants aged 65 to 88 years who did not meet diagnostic criteria for Alzheimer disease or mild cognitive impairment were included. MAIN OUTCOME MEASURES Regional PiB retention and cognitive test performance. RESULTS Of 43 clinically unimpaired elderly persons imaged, 9 (21%) showed evidence of early amyloid deposition in at least 1 brain area using an objectively determined DVR cutoff. Demographic characteristics did not differ significantly between amyloid-positive and amyloid-negative participants, and neurocognitive performance was not significantly worse among amyloid-positive compared with amyloid-negative participants. CONCLUSIONS Amyloid deposition can be identified among cognitively normal elderly persons during life, and the prevalence of asymptomatic amyloid deposition may be similar to that of symptomatic amyloid deposition. In this group of participants without clinically significant impairment, amyloid deposition was not associated with worse cognitive function, suggesting that an elderly person with a significant amyloid burden can remain cognitively normal. However, this finding is based on relatively small numbers and needs to be replicated in larger cohorts. Longitudinal follow-up of these subjects will be required to support the potential of PiB imaging to identify preclinical Alzheimer disease, or, alternatively, to show that amyloid deposition is not sufficient to cause Alzheimer disease within some specified period.


Brain | 2008

Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease

Milos D. Ikonomovic; William E. Klunk; Eric E. Abrahamson; Chester A. Mathis; Julie C. Price; Nicholas D. Tsopelas; Brian J. Lopresti; Scott K. Ziolko; Wenzhu Bi; William R. Paljug; Manik L. Debnath; Caroline E. Hope; Barbara A. Isanski; Ronald L. Hamilton; Steven T. DeKosky

The positron emission tomography (PET) radiotracer Pittsburgh Compound-B (PiB) binds with high affinity to β-pleated sheet aggregates of the amyloid-β (Aβ) peptide in vitro. The in vivo retention of PiB in brains of people with Alzheimers disease shows a regional distribution that is very similar to distribution of Aβ deposits observed post-mortem. However, the basis for regional variations in PiB binding in vivo, and the extent to which it binds to different types of Aβ-containing plaques and tau-containing neurofibrillary tangles (NFT), has not been thoroughly investigated. The present study examined 28 clinically diagnosed and autopsy-confirmed Alzheimers disease subjects, including one Alzheimers disease subject who had undergone PiB-PET imaging 10 months prior to death, to evaluate region- and substrate-specific binding of the highly fluorescent PiB derivative 6-CN-PiB. These data were then correlated with region-matched Aβ plaque load and peptide levels, [3H]PiB binding in vitro, and in vivo PET retention levels. We found that in Alzheimers disease brain tissue sections, the preponderance of 6-CN-PiB binding is in plaques immunoreactive to either Aβ42 or Aβ40, and to vascular Aβ deposits. 6-CN-PiB labelling was most robust in compact/cored plaques in the prefrontal and temporal cortices. While diffuse plaques, including those in caudate nucleus and presubiculum, were less prominently labelled, amorphous Aβ plaques in the cerebellum were not detectable with 6-CN-PiB. Only a small subset of NFT were 6-CN-PiB positive; these resembled extracellular ‘ghost’ NFT. In Alzheimers disease brain tissue homogenates, there was a direct correlation between [3H]PiB binding and insoluble Aβ peptide levels. In the Alzheimers disease subject who underwent PiB-PET prior to death, in vivo PiB retention levels correlated directly with region-matched post-mortem measures of [3H]PiB binding, insoluble Aβ peptide levels, 6-CN-PiB- and Aβ plaque load, but not with measures of NFT. These results demonstrate, in a typical Alzheimers disease brain, that PiB binding is highly selective for insoluble (fibrillar) Aβ deposits, and not for neurofibrillary pathology. The strong direct correlation of in vivo PiB retention with region-matched quantitative analyses of Aβ plaques in the same subject supports the validity of PiB-PET imaging as a method for in vivo evaluation of Aβ plaque burden.


Biological Psychiatry | 2001

Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria

Wayne C. Drevets; Clara Gautier; Julie C. Price; David J. Kupfer; P.E. Kinahan; Anthony A. Grace; Joseph L. Price; Chester A. Mathis

BACKGROUND Studies in experimental animals have implicated the mesolimbic dopaminergic projections into the ventral striatum in the neural processes underlying behavioral reinforcement and motivated behavior; however, understanding the relationship between subjective emotional experience and ventral striatal dopamine (DA) release has awaited human studies. Using positron emission tomography (PET), we correlated the change in endogenous dopamine concentrations following dextroamphetamine (AMPH) administration with the associated hedonic response in human subjects and compared the strength of this correlation across striatal subregions. METHODS We obtained PET measures of [(11)C]raclopride specific binding to DA D2/D3 receptors before and after AMPH injection (0.3 mg/kg IV) in seven healthy subjects. The change in [(11)C]raclopride binding potential (DeltaBP) induced by AMPH pretreatment and the correlation between DeltaBP and the euphoric response to AMPH were compared between the anteroventral striatum (AVS; comprised of accumbens area, ventromedial caudate, and anteroventral putamen) and the dorsal caudate (DCA) using an MRI-based region of interest analysis of the PET data. RESULTS The mean DeltaBP was greater in the AVS than in the DCA (p <.05). The AMPH-induced changes in euphoria analog scale scores correlated inversely with DeltaBP in the AVS (r = -.95; p <.001), but not in the DCA (r =.30, ns). Post hoc assessments showed that changes in tension-anxiety ratings correlated positively with DeltaBP in the AVS (r =.80; p [uncorrected] <.05) and that similar relationships may exist between DeltaBP and emotion ratings in the ventral putamen (as were found in the AVS). CONCLUSIONS The preferential sensitivity of the ventral striatum to the DA releasing effects of AMPH previously demonstrated in experimental animals extends to humans. The magnitude of ventral striatal DA release correlates positively with the hedonic response to AMPH.


Biological Psychiatry | 1999

Pet imaging of serotonin 1A receptor binding in depression

Wayne C. Drevets; Ellen Frank; Julie C. Price; David J. Kupfer; Daniel P. Holt; Phil J. Greer; Yiyun Huang; Clara Gautier; Chester A. Mathis

BACKGROUND The serotonin-1A (5HT1A) receptor system has been implicated in the pathophysiology of major depression by postmortem studies of suicide victims and depressed subjects dying of natural causes. This literature is in disagreement, however, regarding the brain regions where 5HT1A receptor binding differs between depressives and controls and the direction of such differences relative to the normal baseline, possibly reflecting the diagnostic heterogeneity inherent within suicide samples. PET imaging using the 5HT1A receptor radioligand, [11C]WAY-100635, may clarify the clinical conditions under which 5HT1A receptor binding potential (BP) is abnormal in depression. METHODS Regional 5HT1A receptor BP values were compared between 12 unmedicated depressives with primary, recurrent, familial mood disorders and 8 healthy controls using PET and [carbonyl-11C]WAY-100635. Regions-of-interest (ROI) assessed were the mesiotemporal cortex (hippocampus-amygdala) and midbrain raphe, where previous postmortem studies suggested 5HT1A receptor binding is abnormal in depression. RESULTS The mean 5HT1A receptor BP was reduced 41.5% in the raphe (p < .02) and 26.8% in the mesiotemporal cortex (p < .025) in the depressives relative to the controls. Post hoc comparisons showed the abnormal reduction in 5HT1A receptor BP was not limited to these regions, but extended to control ROI in the occipital cortex and postcentral gyrus as well. The magnitude of these abnormalities was most prominent in bipolar depressives (n = 4) and unipolar depressives with bipolar relatives (n = 4). CONCLUSIONS Serotonin-1A receptor BP is abnormally decreased in the depressed phase of familial mood disorders in multiple brain regions. Of the regions tested, the magnitude of this reduction was most prominent in the midbrain raphe. Converging evidence from postmortem studies of mood disorders suggests these reductions of 5HT1A receptor BP may be associated with histopathological changes involving the raphe.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease

Eric M. Reiman; Kewei Chen; Xiaofen Liu; Daniel Bandy; Meixiang Yu; Wendy Lee; Napatkamon Ayutyanont; Jennifer Keppler; Stephanie A. Reeder; Jessica B. Langbaum; Gene E. Alexander; William E. Klunk; Chester A. Mathis; Julie C. Price; Howard J. Aizenstein; Steven T. DeKosky; Richard J. Caselli

Fibrillar amyloid-beta (Aβ) is found in the brains of many cognitively normal older people. Whether or not this reflects a predisposition to Alzheimers disease (AD) is unknown. We used Pittsburgh Compound B (PiB) PET to characterize the relationship between fibrillar Aβ burden and this predisposition in cognitively normal older people at 3 mean levels of genetic risk for AD. Dynamic PiB PET scans, the Logan method, statistical parametric mapping, and automatically labeled regions of interest (ROIs) were used to characterize and compare cerebral-to-cerebellar PIB distribution volume ratios, reflecting fibrillar Aβ burden, in 28 cognitively normal persons (mean age, 64 years) with a reported family history of AD and 2 copies, 1 copy, and no copies of the apolipoprotein E (APOE) ε4 allele. The 8 ε4 homozygotes, 8 heterozygotes, and 12 noncarriers did not differ significantly in terms of age, sex, or cognitive scores. Fibrillar Aβ was significantly associated with APOE ε4 carrier status and ε4 gene dose in AD-affected mean cortical, frontal, temporal, posterior cingulate-precuneus, parietal, and basal ganglia ROIs, and was highest in an additional homozygote who had recently developed mild cognitive impairment. These findings suggest that fibrillar Aβ burden in cognitively normal older people is associated with APOE ε4 gene dose, the major genetic risk factor for AD. Additional studies are needed to track fibrillar Aβ accumulation in persons with different kinds and levels of AD risk; to determine the extent to which fibrillar Aβ, alone or in combination with other biomarkers and risk factors, predicts rates of cognitive decline and conversion to clinical AD; and to establish the role of fibrillar Aβ imaging in primary prevention trials.


Journal of Cerebral Blood Flow and Metabolism | 2005

Kinetic Modeling of Amyloid Binding in Humans using PET Imaging and Pittsburgh Compound-B

Julie C. Price; William E. Klunk; Brian J. Lopresti; Xueling Lu; Jessica A. Hoge; Scott K. Ziolko; Daniel P. Holt; Carolyn C. Meltzer; Steven T. DeKosky; Chester A. Mathis

A valid quantitative imaging method for the measurement of amyloid deposition in humans could improve Alzheimers disease (AD) diagnosis and antiamyloid therapy assessment. Our group developed Pittsburgh Compound-B (PIB), an amyloid-binding radiotracer, for positron emission tomography (PET). The current study was aimed to further validate PIB PET through quantitative imaging (arterial input) and inclusion of subjects with mild cognitive impairment (MCI). Pittsburgh Compound-B studies were performed in five AD, five MCI, and five control subjects and five subjects were retested within 20 days. Magnetic resonance images were acquired for partial volume correction and region-of-interest definition (e.g., posterior cingulate: PCG; cerebellum: CER). Data were analyzed using compartmental and graphical approaches. Regional distribution volume (DV) values were normalized to the reference region (CER) to yield DV ratios (DVRs). Good agreement was observed between compartmental and Logan DVR values (e.g., PCG: r = 0.89, slope = 0.91); the Logan results were less variable. Nonspecific PIB retention was similar across subjects (n = 15, Logan CER DV: 3.63 ± 0.48). Greater retention was observed in AD cortical areas, relative to controls (P < 0.05). The PIB retention in MCI subjects appeared either ‘AD-like’ or ‘control-like’. The mean test/retest variation was ~6% in primary areas-of-interest. The Logan analysis was the method-of-choice for the PIB PET data as it proved stable, valid, and promising for future larger studies and voxel-based statistical analyses. This study also showed that it is feasible to perform quantitative PIB PET imaging studies that are needed to validate simpler methods for routine use across the AD disease spectrum.


Annals of Neurology | 2007

Imaging of amyloid burden and distribution in cerebral amyloid angiopathy.

Keith Johnson; Matt Gregas; John A. Becker; Catherine Kinnecom; David H. Salat; Erin Moran; Erin E. Smith; Jonathan Rosand; Dorene M. Rentz; William E. Klunk; Chester A. Mathis; Julie C. Price; Steven T. DeKosky; Alan J. Fischman; Steven M. Greenberg

Cerebrovascular deposition of β‐amyloid (cerebral amyloid angiopathy [CAA]) is a major cause of hemorrhagic stroke and a likely contributor to vascular cognitive impairment. We evaluated positron emission tomographic imaging with the β‐amyloid–binding compound Pittsburgh Compound B (PiB) as a potential noninvasive method for detection of CAA. We hypothesized that amyloid deposition would be observed with PiB in CAA, and based on the occipital predilection of CAA pathology and associated hemorrhages, that specific PiB retention would be disproportionately greater in occipital lobes.


Neurology | 2009

Relationships between biomarkers in aging and dementia.

William J. Jagust; Susan M. Landau; Leslie M. Shaw; John Q. Trojanowski; Robert A. Koeppe; Eric M. Reiman; Norman L. Foster; Ronald C. Petersen; Michael W. Weiner; Julie C. Price; Chet Mathis

Background: PET imaging using [18F]fluorodeoxyglucose (FDG) and [11C]Pittsburgh compound B (PIB) have been proposed as biomarkers of Alzheimer disease (AD), as have CSF measures of the 42 amino acid β-amyloid protein (Aβ1-42) and total and phosphorylated tau (t-tau and p-tau). Relationships between biomarkers and with disease severity are incompletely understood. Methods: Ten subjects with AD, 11 control subjects, and 34 subjects with mild cognitive impairment from the Alzheimer’s Disease Neuroimaging Initiative underwent clinical evaluation; CSF measurement of Aβ1-42, t-tau, and p-tau; and PIB-PET and FDG-PET scanning. Data were analyzed using continuous regression and dichotomous outcomes with subjects classified as “positive” or “negative” for AD based on cutoffs established in patients with AD and controls from other cohorts. Results: Dichotomous categorization showed substantial agreement between PIB-PET and CSF Aβ1-42 measures (91% agreement, κ = 0.74), modest agreement between PIB-PET and p-tau (76% agreement, κ = 0.50), and minimal agreement for other comparisons (κ <0.3). Mini-Mental State Examination score was significantly correlated with FDG-PET but not with PIB-PET or CSF Aβ1-42. Regression models adjusted for diagnosis showed that PIB-PET was significantly correlated with Aβ1-42, t-tau, and p-tau181p, whereas FDG-PET was correlated only with Aβ1-42. Conclusions: PET and CSF biomarkers of Aβ agree with one another but are not related to cognitive impairment. [18F]fluorodeoxyglucose-PET is modestly related to other biomarkers but is better related to cognition. Different biomarkers for Alzheimer disease provide different information from one another that is likely to be complementary.

Collaboration


Dive into the Julie C. Price's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth E. Snitz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar L. Lopez

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ann D. Cohen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge