Julie Clavreul
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Clavreul.
Waste Management | 2014
Alexis Laurent; Ioannis Bakas; Julie Clavreul; Anna Bernstad; Monia Niero; Emmanuel Gentil; Michael Zwicky Hauschild; Thomas Højlund Christensen
The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.
Waste Management | 2014
Alexis Laurent; Julie Clavreul; Anna Bernstad; Ioannis Bakas; Monia Niero; Emmanuel Gentil; Thomas Højlund Christensen; Michael Zwicky Hauschild
Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.
Waste Management | 2012
Julie Clavreul; Dominique Guyonnet; Thomas Højlund Christensen
Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.
Environmental Modelling and Software | 2014
Julie Clavreul; Hubert Baumeister; Thomas Højlund Christensen; Anders Damgaard
A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH framework and the calculation structure. The main novelties compared to other LCA software are as follows. First, the focus is put on material flow modelling, as each flow is characterised as a mix of material fractions with different properties and flow compositions are computed as a basis for the LCA calculations. Second, the tool has been designed to allow for the easy set-up of scenarios by using a toolbox, the processes within which can handle heterogeneous material flows in different ways and have different emission calculations. Finally, tools for uncertainty analysis are provided, enabling the user to parameterise systems fully and propagate probability distributions through Monte Carlo analysis.
Waste Management & Research | 2009
Emmanuel Gentil; Julie Clavreul; Thomas Højlund Christensen
The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007 in a life-cycle assessment modelling perspective. It is shown that significant GWF benefit was achieved due to the high level of energy and material recovery substituting fossil energy and raw materials production, especially in Denmark and Germany. The study showed that, despite strong regulation of waste management at European level, there are major differences in GWF performance among the member states, due to the relative differences of waste composition, type of waste management technologies available nationally, and the average performance of these technologies. It has been demonstrated through a number of sensitivity analyses that, within the national framework, key waste management technology parameters can influence drastically the national GWF performance of waste management.
International Journal of Life Cycle Assessment | 2013
Julie Clavreul; Dominique Guyonnet; Davide Tonini; Thomas Højlund Christensen
PurposeWhen performing uncertainty propagation, most LCA practitioners choose to represent uncertainties by single probability distributions and to propagate them using stochastic methods. However, the selection of single probability distributions appears often arbitrary when faced with scarce information or expert judgement (epistemic uncertainty). The possibility theory has been developed over the last decades to address this problem. The objective of this study is to present a methodology that combines probability and possibility theories to represent stochastic and epistemic uncertainties in a consistent manner and apply it to LCA. A case study is used to show the uncertainty propagation performed with the proposed method and compare it to propagation performed using probability and possibility theories alone.MethodsBasic knowledge on the probability theory is first recalled, followed by a detailed description of epistemic uncertainty representation using fuzzy intervals. The propagation methods used are the Monte Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy intervals. The proposed method (noted as Independent Random Set, IRS) generalizes the process of random sampling to probability distributions as well as fuzzy intervals, thus making the simultaneous use of both representations possible.Results and discussionThe results highlight the fundamental difference between the probabilistic and possibilistic representations: while the Monte Carlo analysis generates a single probability distribution, the IRS method yields a family of probability distributions bounded by an upper and a lower distribution. The distance between these two bounds is the consequence of the incomplete character of information pertaining to certain parameters. In a real situation, an excessive distance between these two bounds might motivate the decision-maker to increase the information base regarding certain critical parameters, in order to reduce the uncertainty. Such a decision could not ensue from a purely probabilistic calculation based on subjective (postulated) distributions (despite lack of information), because there is no way of distinguishing, in the variability of the calculated result, what comes from true randomness and what comes from incomplete information.ConclusionsThe method presented offers the advantage of putting the focus on the information rather than deciding a priori of how to represent it. If the information is rich, then a purely statistical representation mode is adequate, but if the information is scarce, then it may be better conveyed by possibility distributions.
Water Research | 2014
Hiroko Yoshida; Julie Clavreul; Charlotte Scheutz; Thomas Højlund Christensen
A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but several improvements are recommended, including the additional collection of energy and chemical usage data, the elimination of a reporting threshold, the expansion of substance coverage, and the inclusion of non-point fugitive gas emissions.
Nature Communications | 2017
Rebecca Chaplin-Kramer; Sarah Sim; Perrine Hamel; Benjamin P. Bryant; Ryan R. Noe; Carina Mueller; Giles Rigarlsford; Michal Kulak; Virginia Kowal; Richard Sharp; Julie Clavreul; Edward Price; Stephen Polasky; Mary Ruckelshaus; Gretchen C. Daily
International corporations in an increasingly globalized economy exert a major influence on the planets land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions.
Archive | 2018
Ioannis Bakas; Alexis Laurent; Julie Clavreul; Anna Bernstad Saraiva; Monia Niero; Emmanuel Gentil; Michael Zwicky Hauschild
The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover, specific methodological challenges arise when investigating waste systems, such as the allocation of impacts and the consideration of long-term emissions. The complexity of waste LCAs is mainly derived from the variability of the object under study (waste) which is made of different materials that may require different treatments. This chapter attempts to address these challenges by identifying common misconceptions and by providing methodological guidance for alleviating the associated uncertainty. Readers are also provided with the list of studies reviewed and key sources for reference to implement LCA on solid waste systems.
Science of The Total Environment | 2018
Morten Ryberg; Mikolaj Owsianiak; Julie Clavreul; Carina Mueller; Sarah Sim; Henry King; Michael Zwicky Hauschild
The Planetary Boundaries concept has emerged as a framework for articulating environmental limits, gaining traction as a basis for considering sustainability in business settings, government policy and international guidelines. There is emerging interest in using the Planetary Boundaries concept as part of life cycle assessment (LCA) for gauging absolute environmental sustainability. We tested the applicability of a novel Planetary Boundaries-based life cycle impact assessment methodology on a hypothetical laundry washing case study at the EU level. We express the impacts corresponding to the control variables of the individual Planetary Boundaries together with a measure of their respective uncertainties. We tested four sharing principles for assigning a share of the safe operating space (SoSOS) to laundry washing and assessed if the impacts were within the assigned SoSOS. The choice of sharing principle had the greatest influence on the outcome. We therefore highlight the need for more research on the development and choice of sharing principles. Although further work is required to operationalize Planetary Boundaries in LCA, this study shows the potential to relate impacts of human activities to environmental boundaries using LCA, offering company and policy decision-makers information needed to promote environmental sustainability.