Julie Dang
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Dang.
Cancer Discovery | 2012
Igor Vivanco; H. Ian Robins; Daniel Rohle; Carl Campos; Christian Grommes; Phioanh L. Nghiemphu; Sara Kubek; Barbara Oldrini; Milan G. Chheda; Nicolas Yannuzzi; Hui Tao; Shaojun Zhu; Akio Iwanami; Daisuke Kuga; Julie Dang; Alicia Pedraza; Cameron Brennan; Adriana Heguy; Linda M. Liau; Frank S. Lieberman; W. K. Alfred Yung; Mark R. Gilbert; David A. Reardon; Jan Drappatz; Patrick Y. Wen; Kathleen R. Lamborn; Susan M. Chang; Michael D. Prados; Howard A. Fine; Steve Horvath
UNLABELLED Activation of the epidermal growth factor receptor (EGFR) in glioblastoma (GBM) occurs through mutations or deletions in the extracellular (EC) domain. Unlike lung cancers with EGFR kinase domain (KD) mutations, GBMs respond poorly to the EGFR inhibitor erlotinib. Using RNAi, we show that GBM cells carrying EGFR EC mutations display EGFR addiction. In contrast to KD mutants found in lung cancer, glioma-specific EGFR EC mutants are poorly inhibited by EGFR inhibitors that target the active kinase conformation (e.g., erlotinib). Inhibitors that bind to the inactive EGFR conformation, however, potently inhibit EGFR EC mutants and induce cell death in EGFR-mutant GBM cells. Our results provide first evidence for single kinase addiction in GBM and suggest that the disappointing clinical activity of first-generation EGFR inhibitors in GBM versus lung cancer may be attributed to the different conformational requirements of mutant EGFR in these 2 cancer types. SIGNIFICANCE Approximately 40% of human glioblastomas harbor oncogenic EGFR alterations, but attempts to therapeutically target EGFR with first-generation EGFR kinase inhibitors have failed. Here, we demonstrate selective sensitivity of glioma-specific EGFR mutants to ATP-site competitive EGFR kinase inhibitors that target the inactive conformation of the catalytic domain.
Science Signaling | 2009
Deliang Guo; Robert M. Prins; Julie Dang; Daisuke Kuga; Akio Iwanami; Horacio Soto; Kelly Y. Lin; Tiffany T. Huang; David Akhavan; M. Benjamin Hock; Shaojun Zhu; Ava A. Kofman; Steve J. Bensinger; William H. Yong; Harry V. Vinters; Steve Horvath; Andrew D. Watson; John G. Kuhn; H. Ian Robins; Minesh P. Mehta; Patrick Y. Wen; Lisa M. DeAngelis; Michael D. Prados; Ingo K. Mellinghoff; Timothy F. Cloughesy; Paul S. Mischel
Inhibitors of fatty acid signaling promote apoptosis in glioblastoma cells with highly active EGFR signaling. Inhibiting Lipid Metabolism to Combat Glioblastoma Glioblastoma, the most common form of brain cancer, is frequently lethal. Glioblastoma is often associated with increased signaling through the epidermal growth factor receptor (EGFR); however, therapeutic efforts focused on inhibiting EGFR signaling have been disappointing. Guo et al. analyzed tumor tissue removed from glioblastoma patients before and during treatment with the EGFR inhibitor lapatinib and found that EGFR signaling activated sterol regulatory element–binding protein 1 (SREBP-1), a key regulator of lipid metabolism, and increased the cellular concentrations of fatty acids. Intriguingly, inhibiting fatty acid synthesis promoted apoptosis in glioblastoma cells with substantial EGFR signaling both in vitro and when transplanted into immunodeficient mice, but not in glioblastoma cells with little EGFR signaling. Thus, inhibition of fatty acid synthesis may represent a new avenue toward treating glioblastomas driven by EGFR signaling. Glioblastoma, the most common malignant brain tumor, is among the most lethal and difficult cancers to treat. Although epidermal growth factor receptor (EGFR) mutations are frequent in glioblastoma, their clinical relevance is poorly understood. Studies of tumors from patients treated with the EGFR inhibitor lapatinib revealed that EGFR induces the cleavage and nuclear translocation of the master transcriptional regulator of fatty acid synthesis, sterol regulatory element–binding protein 1 (SREBP-1). This response was mediated by Akt; however, clinical data from rapamycin-treated patients showed that SREBP-1 activation was independent of the mammalian target of rapamycin complex 1, possibly explaining rapamycin’s poor efficacy in the treatment of such tumors. Glioblastomas without constitutively active EGFR signaling were resistant to inhibition of fatty acid synthesis, whereas introduction of a constitutively active mutant form of EGFR, EGFRvIII, sensitized tumor xenografts in mice to cell death, which was augmented by the hydroxymethylglutaryl coenzyme A reductase inhibitor atorvastatin. These results identify a previously undescribed EGFR-mediated prosurvival metabolic pathway and suggest new therapeutic approaches to treating EGFR-activated glioblastomas.
Cancer Discovery | 2011
Kazuhiro Tanaka; Ivan Babic; David Nathanson; David Akhavan; Deliang Guo; Beatrice Gini; Julie Dang; Shaojun Zhu; Huijun Yang; Jason de Jesus; Ali Nael Amzajerdi; Yinan Zhang; Christian C. Dibble; Hancai Dan; Amanda L. Rinkenbaugh; William H. Yong; Harry V. Vinters; Joseph F. Gera; Webster K. Cavenee; Timothy F. Cloughesy; Brendan D. Manning; Albert S. Baldwin; Paul S. Mischel
UNLABELLED Although it is known that mTOR complex 2 (mTORC2) functions upstream of Akt, the role of this protein kinase complex in cancer is not well understood. Through an integrated analysis of cell lines, in vivo models, and clinical samples, we demonstrate that mTORC2 is frequently activated in glioblastoma (GBM), the most common malignant primary brain tumor of adults. We show that the common activating epidermal growth factor receptor (EGFR) mutation (EGFRvIII) stimulates mTORC2 kinase activity, which is partially suppressed by PTEN. mTORC2 signaling promotes GBM growth and survival and activates NF-κB. Importantly, this mTORC2-NF-κB pathway renders GBM cells and tumors resistant to chemotherapy in a manner independent of Akt. These results highlight the critical role of mTORC2 in the pathogenesis of GBM, including through the activation of NF-κB downstream of mutant EGFR, leading to a previously unrecognized function in cancer chemotherapy resistance. These findings suggest that therapeutic strategies targeting mTORC2, alone or in combination with chemotherapy, will be effective in the treatment of cancer. SIGNIFICANCE This study demonstrates that EGFRvIII-activated mTORC2 signaling promotes GBM proliferation, survival, and chemotherapy resistance through Akt-independent activation of NF-κB. These results highlight the role of mTORC2 as an integrator of two canonical signaling networks that are commonly altered in cancer, EGFR/phosphoinositide-3 kinase (PI3K) and NF-κB. These results also validate the importance of mTORC2 as a cancer target and provide new insights into its role in mediating chemotherapy resistance, suggesting new treatment strategies.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Deliang Guo; Isabel Hildebrandt; Robert M. Prins; Horacio Soto; Mary M. Mazzotta; Julie Dang; Johannes Czernin; John Y.-J. Shyy; Andrew D. Watson; Michael E. Phelps; Caius G. Radu; Timothy F. Cloughesy; Paul S. Mischel
The EGFR/PI3K/Akt/mTOR signaling pathway is activated in many cancers including glioblastoma, yet mTOR inhibitors have largely failed to show efficacy in the clinic. Rapamycin promotes feedback activation of Akt in some patients, potentially underlying clinical resistance and raising the need for alternative approaches to block mTOR signaling. AMPK is a metabolic checkpoint that integrates growth factor signaling with cellular metabolism, in part by negatively regulating mTOR. We used pharmacological and genetic approaches to determine whether AMPK activation could block glioblastoma growth and cellular metabolism, and we examined the contribution of EGFR signaling in determining response in vitro and in vivo. The AMPK-agonist AICAR, and activated AMPK adenovirus, inhibited mTOR signaling and blocked the growth of glioblastoma cells expressing the activated EGFR mutant, EGFRvIII. Across a spectrum of EGFR-activated cancer cell lines, AICAR was more effective than rapamycin at blocking tumor cell proliferation, despite less efficient inhibition of mTORC1 signaling. Unexpectedly, addition of the metabolic products of cholesterol and fatty acid synthesis rescued the growth inhibitory effect of AICAR, whereas inhibition of these lipogenic enzymes mimicked AMPK activation, thus demonstrating that AMPK blocked tumor cell proliferation primarily through inhibition of cholesterol and fatty acid synthesis. Most importantly, AICAR treatment in mice significantly inhibited the growth and glycolysis (as measured by 18fluoro-2-deoxyglucose microPET) of glioblastoma xenografts engineered to express EGFRvIII, but not their parental counterparts. These results suggest a mechanism by which AICAR inhibits the proliferation of EGFRvIII expressing glioblastomas and point toward a potential therapeutic strategy for targeting EGFR-activated cancers.
Cancer Research | 2009
Kan V. Lu; Shaojun Zhu; Anna Nada Cvrljevic; Tiffany T. Huang; Shawn Sarkaria; David Ahkavan; Julie Dang; Eduard B. Dinca; Seema Plaisier; Isaac Oderberg; Yohan Lee; Zugen Chen; Jeremy S. Caldwell; Yongmin Xie; Joseph A. Loo; David Seligson; Arnab Chakravari; Francis Y. Lee; Roberto Weinmann; Timothy F. Cloughesy; Stanley F. Nelson; Gabriele Bergers; Thomas G. Graeber; Frank Furnari; C. David James; Webster K. Cavenee; Terrance G. Johns; Paul S. Mischel
Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR- and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression, and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples showed frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies.
Journal of Immunology | 2008
Peter T. Jindra; Aileen Hsueh; Longshen Hong; David W. Gjertson; Xiu Da Shen; Feng Gao; Julie Dang; Paul S. Mischel; William M. Baldwin; Michael C. Fishbein; Jerzy W. Kupiec-Weglinski; Elaine F. Reed
Anti-MHC class I alloantibodies have been implicated in the process of acute and chronic rejection because these Abs can bind to endothelial cells and transduce signals leading to the activation of cell survival and proliferation pathways. To characterize the role of the MHC class I-signaling pathway in the pathogenesis of Ab-mediated rejection, we developed a mouse vascularized heterotopic cardiac allograft model in which B6.RAG1 KO hosts (H-2Kb/Db) received a fully MHC-incompatible BALB/c (H-2Kd/Dd) heart transplant and were passively transfused with anti-donor MHC class I Ab. We demonstrate that cardiac allografts of mice treated with anti-MHC class I Abs show characteristic features of Ab-mediated rejection including microvascular changes accompanied by C4d deposition. Phosphoproteomic analysis of signaling molecules involved in the MHC class I cell proliferation and survival pathways were elevated in anti-class I-treated mice compared with the isotype control-treated group. Pairwise correlations, hierarchical clustering, and multidimensional scaling algorithms were used to dissect the class I-signaling pathway in vivo. Treatment with anti-H-2Kd Ab was highly correlated with the activation of Akt and p70S6Kinase (S6K). When measuring distance as a marker of interrelatedness, multidimensional scaling analysis revealed a close association between members of the mammalian target of rapamycin pathway including mammalian target of rapamycin, S6K, and S6 ribosomal protein. These results provide the first analysis of the interrelationships between these signaling molecules in vivo that reflects our knowledge of the signaling pathway derived from in vitro experiments.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Igor Vivanco; Daniel Rohle; Matthias Versele; Akio Iwanami; Daisuke Kuga; Barbara Oldrini; Kazuhiro Tanaka; Julie Dang; Sara Kubek; Nicolaos Palaskas; Teli Hsueh; Michael J. Evans; David J. Mulholland; Daniel Wolle; Sigrid Rajasekaran; Ayyappan K. Rajasekaran; Linda M. Liau; Timothy F. Cloughesy; Ivan Dikic; Cameron Brennan; Hong Wu; Paul S. Mischel; Timothy Pietro Suren Perera; Ingo K. Mellinghoff
The phosphatase and tensin homolog (PTEN) is a tumor suppressor that is inactivated in many human cancers. PTEN loss has been associated with resistance to inhibitors of the epidermal growth factor receptor (EGFR), but the molecular basis of this resistance is unclear. It is believed that unopposed phosphatidylinositol-3-kinase (PI3K) activation through multiple receptor tyrosine kinases (RTKs) can relieve PTEN-deficient cancers from their “dependence” on EGFR or any other single RTK for survival. Here we report a distinct resistance mechanism whereby PTEN inactivation specifically raises EGFR activity by impairing the ligand-induced ubiquitylation and degradation of the activated receptor through destabilization of newly formed ubiquitin ligase Cbl complexes. PTEN-associated resistance to EGFR kinase inhibitors is phenocopied by expression of dominant negative Cbl and can be overcome by more complete EGFR kinase inhibition. PTEN inactivation does not confer resistance to inhibitors of the MET or PDGFRA kinase. Our study identifies a critical role for PTEN in EGFR signal termination and suggests that more potent EGFR inhibition should overcome resistance caused by PI3K pathway activation.
Clinical Cancer Research | 2008
Koji Yoshimoto; Julie Dang; Shaojun Zhu; David Nathanson; Tiffany T. Huang; Rebecca A. Dumont; David Seligson; William H. Yong; Zhenggang Xiong; Nagesh Rao; Henrik Winther; Arnab Chakravarti; Darell D. Bigner; Ingo K. Mellinghoff; Steve Horvath; Webster K. Cavenee; Timothy F. Cloughesy; Paul S. Mischel
Purpose: Epidermal growth factor receptor variant III (EGFRvIII) is an oncogenic, constitutively active mutant form of the EGFR that is commonly expressed in glioblastoma and is also detected in a number of epithelial cancers. EGFRvIII presents a unique antigenic target for anti-EGFRvIII vaccines and it has been shown to modulate response to EGFR kinase inhibitor therapy. Thus, detection in clinical samples may be warranted. Existing patents preclude the use of anti-EGFRvIII antibodies for clinical detection. Further, frozen tissue is not routinely available, particularly for patients treated in the community. Thus, detection of EGFRvIII in formalin-fixed paraffin-embedded (FFPE) clinical samples is a major challenge. Experimental Design: We developed a real-time reverse transcription-PCR (RT-PCR) assay for detecting EGFRvIII in FFPE samples and analyzed 59 FFPE glioblastoma clinical samples with paired frozen tissue from the same surgical resection. We assessed EGFRvIII protein expression by immunohistochemistry using two distinct specific anti-EGFRvIII antibodies and examined EGFR gene amplification by fluorescence in situ hybridization. Results: The FFPE RT-PCR assay detected EGFRvIII in 16 of 59 (27%) samples, exclusively in cases with EGFR amplification, consistent with the expected frequency of this alteration. The FFPE RT-PCR assay was more sensitive and specific for detecting EGFRvIII than either of the two antibodies alone, or in combination, with a sensitivity of 93% (95% confidence interval, 0.78-1.00) and a specificity of 98% (95% confidence interval, 0.93-1.00). Conclusion: This assay will facilitate accurate assessment of EGFRvIII in clinical samples and may aid in the development of strategies for stratifying patients for EGFRvIII-directed therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Tim Fenton; David Nathanson; Claudio P. Albuquerque; Daisuke Kuga; Akio Iwanami; Julie Dang; Huijun Yang; Kazuhiro Tanaka; Sueli Mieko Oba-Shinjo; Miyuki Uno; Maria del-Mar Inda; Jill Wykosky; Robert M. Bachoo; C. David James; Ronald A. DePinho; Scott R. VandenBerg; Huilin Zhou; Suely Kazue Nagahashi Marie; Paul S. Mischel; Webster K. Cavenee; Frank B. Furnari
Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3′-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Caroline Gregorian; Jonathan Nakashima; Sarah M. Dry; P. Leia Nghiemphu; Kate Barzan Smith; Yan Ao; Julie Dang; Gregory W. Lawson; Ingo K. Mellinghoff; Paul S. Mischel; Michael E. Phelps; Luis F. Parada; Xin Liu; Michael V. Sofroniew; Fritz C. Eilber; Hong Wu
Patients with neurofibromatosis type 1 (NF1) carry approximately a 10% lifetime risk of developing a malignant peripheral nerve sheath tumor (MPNST). Although the molecular mechanisms underlying NF1 to MPNST malignant transformation remain unclear, alterations of both the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways have been implicated. In a series of genetically engineered murine models, we perturbed RAS/RAF/MAPK or/and PTEN/PI3K/AKT pathway, individually or simultaneously, via conditional activation of K-ras oncogene or deletion of Nf1 or Pten tumor suppressor genes. Only K-Ras activation in combination with a single Pten allele deletion led to 100% penetrable development of NF lesions and subsequent progression to MPNST. Importantly, loss or decrease in PTEN expression was found in all murine MPNSTs and a majority of human NF1-associated MPNST lesions, suggesting that PTEN dosage and its controlled signaling pathways are critical for transformation of NFs to MPNST. Using noninvasive in vivo PET-CT imaging, we demonstrated that FDG can be used to identify the malignant transformation in both murine and human MPNSTs. Our data suggest that combined inhibition of RAS/RAF/MAPK and PTEN/PI3K/AKT pathways may be beneficial for patients with MPNST.